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Abstract—“Big data” on atrocities events are now widely
analyzed in the social sciences. Unfortunately, these data often
contain incomplete information on the identities of atrocity
perpetrators. This study addresses this deficiency by developing
a machine learning approach for the accurate recovery of un-
known perpetrator identities within existent atrocities datasets.
In doing so, it demonstrates how to transform and standardize
a large number of auxiliary variables into text-compatible data.
It next shows how to leverage this information to train a series
of classifiers on observed atrocities data. After identifying the
ideal set of machine learning algorithms and evaluating their
performance in this context, this study then uses an ensemble of
the best performing algorithms to classify all unknown atrocity
perpetrators included within a prominent atrocities dataset,
validating the results with external data from the Iraq conflict.
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I. INTRODUCTION

The intentional killing of civilians by armed combat-
ants for political motives—which we term ‘atrocities’—
represents one of the most pernicious attributes of modern
warfare. There is also ample evidence to suggest that this
practice remains widespread [1], [2]. In light of these
realities, there have been several recent efforts to collect
large, fine grained datasets on atrocity events. For instance,
the Armed Conflict Location and Event Data (ACLED)
project [3] records several forms of ‘violence against civil-
ians’ within developing countries in Africa and Asia. Like-
wise, [2] codes and provides annual data on one-sided
(government and rebel) violence against civilians during
intrastate wars, whereas the geo-referenced event dataset
[4] now codes one-sided violence at a near-global scale.
Lastly, and perhaps most extensively, the Political Instability
Task Force’s (PITF’s) recently created Worldwide Atrocities
Dataset records geo-located atrocity events involving at least
five civilian causalities at the daily level for all countries
other than the U.S., from 1995-present [5].

These data collection efforts are commendable, and each
dataset mentioned above has facilitated numerous theoretical
insights into the determinants of atrocities [6], [7], [8]. Yet,
while the above data projects have exerted considerable
effort in coding the identity of atrocity-event perpetrators,
many of their recorded atrocity-events lack information on

the identity of atrocity perpetrators. Consider for example,
the PITF Worldwide Atrocities Dataset mentioned above.
This dataset uses NGO and international newswire reports
to human code atrocity perpetrators’ identities according to
an eight-category perpetrator ontology: state, transnational,
non-state (no state sanction), non-state (state sanctioned),
multiple (state), multiple (non-state), multiple (state and non-
state), and unknown. Of those atrocity events recorded by the
PITF for the years 1995-2013, nearly 32% of all incidents
were recorded as unknown, making this designation the
second most frequent perpetrator classification within the
PITF data. ACLED similarly provides detailed perpetrator
information within its recorded cases of violence against
civilians. Of the 29,000 recorded African cases of violence
against civilians during the years 1997-2014, ACLED re-
ports 6,533 (22.5%) as having unknown perpetrators.

Incomplete information on the identities of ‘political
violence perpetrators’ within event datasets is both a well
known problem, and an understandable one. Indeed, high
levels of missingness in perpetrator identities have now been
shown to be a systematic problem for political violence
data [9], [10]. In terms of the mechanisms generating this
missingness, we note that atrocities, like many forms of
contemporary political violence, often occur in rural areas,
conflict zones, and/or countries lacking in press freedoms.
These factors limit the completeness of political violence
reporting, and NGO or news reports thereof [11], [12]—
which are the primary sources used to identify and code
atrocity events by the aforementioned data projects. Simi-
larly, atrocity perpetrators often have incentives to obscure
their identities in order to avoid subsequent prosecution or
to instill added fear among civilians, and civilian victims
may not be willing to openly speak to the press about
perpetrator identities for fear of retribution. This further
limits the identification of atrocity perpetrators within media
reports of atrocities.

Nevertheless, accurately identifying the perpetrators of
atrocities is important for both theory testing and interna-
tional advocacy. Numerous scholars posit theories of atroc-
ities that hinge on the identity of their perpetrators, and go
on to test such theories with data similar to that described
above [13], [6], [7], [8]. In such contexts, missing identity-
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information on atrocity perpetrators requires that these cases
be dropped, which, if they are not missing completely at
random (MCAR), can bias one’s estimates and conclusions.

Similarly, efforts to prosecute atrocities by domestic or
international legal bodies rely on investigators’ abilities
to accurately identify atrocity perpetrators. And naming
and shaming strategies by the media and human rights
campaigners also entail that when atrocities are committed,
the proper perpetrators can be identified, and shamed, so
as to compel them to curtail their actions [14], [15]. If
media-reported atrocities lack perpetrator information, the
effectiveness of naming and shaming tools will be severely
undermined. Hence, the development of methods for the
recovery of atrocity perpetrators’ identities is needed to (i)
enable scholars to better leverage the recorded atrocities
events in existing datasets for scientific research and (ii)
provide more accurate atrocity information to lawmakers,
investigators, and advocacy groups interested in preventing
atrocities, or punishing their perpetrators.

This study develops an approach for the identification
of unknown atrocity perpetrators in such circumstances. It
begins with the recognition that, while atrocities datasets
often lack information on perpetrator identity, they nev-
ertheless include a wealth of meta-data on the severity,
location, timing, victims, and details of any given atrocity
event. For example, ACLED includes information on the
identity of atrocity-victims, in addition to information on
the geographic location and timing of relevant events, and
the news report source. The PITF’s atrocity data likewise
contain information on the number of civilians killed and
injured, a summary of the event, the geographic location,
and the method(s) of violence used, among other variables.
Using the PITF atrocities data, this study therefore develops
an approach to integrate all available contextual information
information, which is often both text-based and numeric,
into a unified input format. These input data are then used as
predictors within an ensemble of supervised machine learn-
ing (ML) techniques, so as to classify atrocity perpetrators
within in-sample and out-of-sample settings.

In applying our proposed ML approach to the PITF data
below, we also compare the performance of this approach to
a recently proposed multiple imputation (MI) strategy [10].
We find that ML offers a number of advantages over MI
for the task of accurately recovering perpetrator identities.
Following these comparisons, we identify the optimal ML
classifiers for the PITF’s atrocities cases. We then apply
this subset of ML classifiers—along with MI—to the PITF’s
atrocities cases with unknown perpetrators, so as to provide
future researchers with credible perpetrator information on
these events. We find in these cases that the vast majority
of unknown perpetrator cases are attributable to non-state
actors, rather than state-based or state-affiliated actors, which
has important implications for both our theoretical under-
standing of atrocities, and analyses thereof. After discussing

these implications, we validate our unknown perpetrator
classifications against an external dataset on insurgent vi-
olence against civilians in Iraq (2004-2010).

II. OVERVIEW OF APPROACH

Atrocities data are typically recorded at the event level,
with each row in one’s data corresponding to a single event
that was identified from a news source or NGO/government
report. Additional variables then separately record atrocity-
information associated with “who” did “what” to “whom”
and “where.” Auxiliary information pertaining to a given
event or its coding is then included within additional variable
fields for the sources coded, synopses of the event itself,
and other details such as the tactic(s) used, and numbers
of civilians injured or killed. Depending on the data set,
coding system, and coding sources, these variables will
have varying levels of both detail and missingness. For
our purposes, atrocity-perpetrator information corresponds
to the “who” aspect mentioned above, and is typically
coded as a categorical identifier for whether the perpetrator
of a given atrocity was a state, rebel, militia, civilian, or
international actor—alongside designations for cases where
the perpetrator is “unknown.”

We contend that proper recovery of perpetrator identities
in cases where these actors were recorded as “unknown”
is essential for both atrocities researchers and analysts.
Supervised ML methods offer one means of doing so. In
essence, our supervised ML approach turns missing perpe-
trator identities into a classification problem. A variety of
different ML algorithms are then trained on the cases that do
not have missing perpetrator information, so as to calibrate
and identify the best classifiers for accurately predicting
these categorical classifications “in sample.” Under this
framework, the large number of contextual variables for each
atrocities event, including measures of victim information,
geolocation, timing, textual summaries of the events, and
sources used for coding, can be used as input data to
classify perpetrators’ identities. In these instances, one can
further divide samples into training and test data for a
robust evaluation of how well each classifier performs, while
also minimizing threats of overfitting. After identifying the
best performing classifiers, an ensemble (agreement) of
these classifiers’ predictions can then be derived for the
missing perpetrator cases in one’s data, so as to recover the
most likely perpetrators involved in these instances. In this
regard, our research compliments a variety of recent ML
applications to the study of political violence [16], [17] and
to atrocities events coding [18].

One challenge for our proposed approach concerns how
best to incorporate the full set of additional contextual
variables as “features” within a single ML classification
task. This is a challenge because—within both the PITF
examined below and the related datasets mentioned above—
some contextual atrocities variables are numeric, whereas
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others are textual (and are at times multiple sentences in
length), and still others are categorical. Moreover, each
type of contextual variable can exhibit its own pattern of
missingness. Given this potential heterogeneity in variable
properties, we propose a data processing step below where
one “standardizes” all variables for an ML classification
task by converting all variables into a single document
term matrix (DTM), including NAs, while appending any
numeric variable values to variables’ labels in order to ensure
that similar numeric entries (across variables) do not get
mistaken for equivalent values during the DTM-construction
and classification tasks. This strategy ensures that missing-
ness is leveraged as an informative trait rather than listwise
deleting that case. This overall approach also helps to ensure
that fine grained numeric information, and rich qualitative
descriptions, can be simultaneously leveraged under a single
ML classification framework.

We discuss our ML approach in detail below. Before
doing so, we note that one alternative means of handling
unknown perpetrator identities is MI [10]. In most social
science applications of MI, missing categorical values are
typically imputed with continuous predictions under a multi-
variate normal model, with these resultant imputations either
left “as is” or “discretized” after imputation. More recent
MI methods increasingly allow one to impute categorical
variables directly using, for instance, multinomial logit [10].
We posit that each of these approaches is likely to under-
perform in categorical classification relative to supervised
ML. Numerous ML algorithms have been explicitly designed
to outperform common parametric models in polytomous
classification via innovations such as penalized maximum
likelihood, classification trees, and neural networks.

As a consequence of these innovations, ML algorithms’
superior performance in prediction relative to standard
parametric models has been now convincingly argued and
demonstrated in conflict research [16], [17]. Moreover, as
elaborated upon below, the practice of ensembling several
distinct ML algorithms’ predictions into a single (more
accurate) prediction of each missing case is likely to further
improve upon the strengths of ML over MI for the task of
recovering categorical perpetrator identities—given ML en-
sembles’ widely noted advantages over individual classifiers
in these regards [19], [20], [21]. Hence, while MI may be
ideal for handling perpetrator identities in instances where
perpetrator variables are included in a subsequent regression
analysis,1 ML is likely preferable in instances where one
prioritizes the accurate recovery of unknown values.

There are four instances where recovering accurate per-
petrator identity values with (ensemble) ML is preferable
to handling missing perpetrator identities via MI. First, as
noted above, accurately identifying human rights violators
is critical to successful international naming and shaming

1Given MI’s incorporation of uncertainty at the analysis stage.

efforts. Second, the accurate recovery of perpetrator identity
is also often most relevant at the initial event dataset creation
stage [18]. MI is limited in such settings given that event
data generators will not have access to (or be able to
anticipate) the additional variables that will ultimately be
included within regressions analyzing their atrocities data.
As researchers must include all regression variables within
MI to avoid bias [22], the use of MI to recover perpetrator
identities at the initial data generation stage risks introducing
bias, and thus has limited applicability.

Third, researchers often make use of perpetrator identities
not as control or explanatory variables, but rather, to ini-
tially subset event datasets into smaller, perpetrator-specific
samples. For example, [8] develop a theory concerning the
effects of droughts on armed rebel actors’ incentives to
use violence against civilians. They test this theory by sub-
setting the PITF data mentioned above to a sample contain-
ing only those atrocity-events arising from rebel perpetrators,
omitting all unknown perpetrator cases. Likewise, [7] posit
that government and rebel actors will each be more likely to
target civilians that have ethnic ties to their opponents. To
test these expectations, they analyze separate samples (and
models) of state and rebel perpetrated violence. Because
perpetrator identities are used in the above studies to define
samples prior to analysis, MI has limited applicability,
relative to alternate approaches that prioritize the a priori
accurate classification of perpetrator.

Fourth, ML is also more tractable than MI in recover-
ing unknown perpetrator identities when one’s predictors
include unstructured text. Such text is common in atrocities
event datasets, where multiple variable fields often contain
summaries of the news stories and sources used for coding
each event, or related hard-to-quantify contextual variables
(e.g., estimates of the numbers of civilians injured or killed).
While MI can handle categorical variables, the number of
categorical variables generated by DTMs of text (which
generally equal the number of total unique words appearing
across all text—often in the thousands) limits the applica-
bility of MI due to computational and runtime concerns.
Indeed, as [23] note, common MI methods work well for
applications with 30-40 variables but are “especially poorly
suited” for datasets with “many more variables” (pg. 562).
ML methods do not face these constraints, and are hence
more applicable in situations where text and numeric data
are available as potential predictors of perpetrator identities.

III. DATA DESCRIPTION

We apply our ML approach to the PITF Worldwide Atroc-
ities Dataset, which is a recently developed global event
dataset. Atrocities are defined by the PITF [5] as “implicitly
or explicitly political, direct, and deliberate violent action
resulting in the death of noncombatant civilians” (pg. 3).
The PITF uses a primary set of seven international news and
NGO sources to collect and code a reasonably systematic
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sample of atrocities occurring worldwide, beginning in 1995,
and then employs human coders to accurately record each
atrocity’s traits and geo-location. While the PITF data con-
tinues to be released in near real time, the present analysis
focuses on the 1995-2013 period, which was the most recent
data available at the beginning of this study. The PITF
dataset records information on both atrocity campaigns, and
atrocity incidents where five or more noncombatant deaths
occurred.2 In the interest of comparability across different
cases and regions, only incidents are considered below.

Beyond the occurrence of an atrocity event or campaign,
the PITF data also record an extensive number of additional
variables on each atrocity’s characteristics. These additional
variables are fully defined in [5] and include information,
when available, on the date of an atrocity, its sub-national
location, the identities of its victim(s) and perpetrator(s), the
modes of violence and tactics used, the number of civilians
killed and injured, a summary of the event, and the sources
used to code an event, amongst other meta-data

Our sample contains a total of 7,127 atrocity cases. The
main quantity of interest for the study at hand is the identity
of a given atrocity’s perpetrator(s). As mentioned earlier,
perpetrators within the PITF data are coded within a “per-
petrator” variable according to the following eight categories
(i) state, (ii) transnational, (iii) non-state (no state sanction),
(iv) non-state (state sanctioned), (v) multiple (state), (vi)
multiple (non-state), (vii) multiple (state and non-state), and
(viii) unknown. Of the atrocity events recorded by the PITF
for the years 1995-2013, nearly 32% of all incidents were
recorded as unknown, which accordingly makes this des-
ignation the second most frequent perpetrator classification
within the PITF data. We present a frequency histogram of
atrocities by perpetrator for our entire sample in Figure 1.

A. Preprocessing

Aside from our main perpetrator identity variable, all
remaining PITF variables included in our analysis were
transformed to the DTM-level for use as features within the
classification tasks described below. DTMs are commonly
used for text-as-data oriented classification tasks, wherein
one seeks to classify a document-level coding based upon
the text features of each document [20], [21], [24]. For such
DTMs, each row corresponds to a unique document and
each column corresponds to each unique word appearing
across one’s document-corpus. The cell values of the DTM
accordingly denote the number of appearances of each word
(column) within each document (row). For our application,
we do not have a set of exclusively text-based features, but

2Per [5], incidents are defined as as “perpetrated by members of a single
organization or communal group, or by members of multiple organizations
or groups reportedly acting in concert, in a single locality within a 24-hour
period” (pg. 6). Campaigns are a residual category for atrocities that lack
sufficient information for the identification of incidents.

Figure 1. Atrocities by Perpetrator, 1995-2013

rather a mix of text-based variables3 and numeric variables
that we intend to use for classification. Moreover, because
virtually all numeric variables included within the PITF
data are categorical,4 converting each and every variable
into “text data,” and then restructuring all PITF atrocities
variables into a single DTM is not only appropriate, but
ideal for our anticipated classification tasks.

In these regards, care must be taken to
ensure that numeric or categorical values (e.g.,
Scorched.Earth.Tactics= 1) and/or common
terms within one variable field are not interpreted
by the ML algorithm as having the same meaning
as equivalent values within other variable fields (e.g.,
Deaths.Contested= 1). To address this issue, we
preprocessed our data frame prior to converting it into
a DTM by appending a variable’s label to each numeric
(or common term) variable value where appropriate, such
that the previous example yields two distinct string-
values for the number “1”: “Scorched.Earth.Tactics1”
and “Deaths.Contested1.” This was especially beneficial
for ensuring that our DTM’s “unique terms” included
distinct values for the many binary variables’ corresponding
binary values in the dataset. Further, where appropriate,
“NA” or “missing” records were also treated as unique
strings (e.g., “Scorched.Earth.TacticsNA”) and included as
a feature-value for classification.

We then sought to ensure that common N-gram phrases
were not broken up into individual words within our DTM
when these phrases corresponded to unique constructs. This

3Which, in some cases, correspond to single words, and in other cases,
include lengthy passages of text, such as the Description field, which
contains 2-3 sentence descriptions describing the event in narrative English.

4Moreover, even the numeric variables that are not categorical contain
categorical values (including NAs) alongside numeric values, rendering
them effectively categorical for our tasks.



2964

was achieved by converting all common N-gram phrases5

to unigrams via dashed-lines. Note however that we did
not implement this step for variables containing longer
text passages that corresponded to narratives or comments,
rather than categorical (N-gram) classes. After converting
each variable into appropriate ‘text data,’ all variables were
restructured into a DTM for analysis, where a “document”
in this case corresponds to a single atrocity case, and that
document’s “words” correspond to the combined string-
converted values on each variable for that atrocity-case. This
is in line with published supervised text-as-data applications
[21]. All told, our final DTM had 7,127 “documents” and
2,947 unique terms.

IV. ML AND MI APPLICATIONS

Supervised ML methods have different strengths and
weaknesses for any particular application. As such, re-
searchers increasingly recommend ensemble methods, which
allow one to leverage multiple ML or predictive algorithms
within a single classification or forecasting task, so as to
maximize tradeoffs between efficiency and accuracy [20].
We follow this approach here in using [21] to evaluate
the following ML algorithms for the classification of our
perpetrator identities: LASSO, stabilized linear discriminant
analysis (SLDA), support vector machine (SVM), maximum
entropy, bagging, boosting, random forests, classification
trees, and neural networks. After evaluating the out-of-
sample performance of each algorithm, we retain the six best
preforming algorithms, and use their ensemble to classify the
atrocities cases in our sample that exhibit missing perpetrator
identities.

We begin by evaluating the aforementioned classifiers
within our subsample of atrocities events with known per-
petrators. This subsample corresponds to the 68% of our
atrocities sample that recorded a perpetrator as not being
“unknown.” The resultant outcome variable that is used in
the first step of our classification tasks thus corresponds
to a seven-category polytomous (i.e., categorical) known
perpetrator variable, and encompasses 4,870 (out of 7,127)
total observations. For these 4,870 retained cases, we further
divide this sample into 80% training data (N =3,847) and
20% test data (N =1,023).

We compare this ML approach to the MI approach
proposed by [10] below. These comparisons are not in-
tended to suggest that [10]’s MI approach is inferior to
our proposed ML approach. Rather, our claim is that ML
is a preferred method for the specific task of accurately
recovering perpetrator identities from unknown-perpetrator
cases. If the goal is instead to make inferences within a

5For example, the Intent variable coded each atrocity for its intent
based on an six category categorical string-indicator. For each categorical
string-value, we omitted spaces so that each was considered as a single
unigram, such that, “Intent Apparent But Not Stated” was converted to
“Intent-Apparent-But-Not-Stated.”

standard regression model that includes perpetrator identity
as a control or explanatory variable, we recommend that
researchers follow [10]. For our MI comparisons, we retain
a subset of the predictor variables mentioned above, as not
all ML predictors are compatible with MI.6 For the variables
retained within our MI approach, we treat missing values
as missing within the MI model, rather than as unique
categorical character-strings (as we do in ML). Following
[10], we use these retained variables to “train” a set of
100 MI models on the known perpetrator data mentioned
above, while artificially deleting the identities of our test
cases so that our MI method generates predictions for these
cases under a similar out-of-sample framework to that of
our ML approach. While doing so, we follow [10] to treat
perpetrator identity, and all other relevant dichotomous or
polytomous variables, as categorical within our MI-routines,
and then ensemble the MI predictions for perpetrator identity
to identify MI’s modal perpetrator identity prediction across
all 100 MI datasets for comparison to ML.

A. Known Perpetrator Classification

Before leveraging our ensemble approach, we first classify
our known atrocity-perpetrators separately by training each
of our nine candidate algorithms on the training sample
referenced above. Based on the results from these training
exercises, we predict the known perpetrator identity classes
in our (held-out) test sample. We then follow the same
steps using our aforementioned MI strategy, and compare
each approach’s out-of-sample perpetrator predictions to the
“true” perpetrator identities in this test sample.

To do so, we follow past work in this arena [20], [21] to
extract out-of-sample classification measures of (i) precision,
(ii) recall, (iii) f-scores, and (iv) the proportion of all cases
correctly classified (CCR) for each ML algorithm used,
as well as for our MI approach. Precision measures the
correct predictions of a given class (e.g., perpetrator identity
= “state”) as a share of an algorithm’s total (correct and
incorrect) predictions for that same class. Recall instead
quantifies the proportion of a given class’ (i.e., perpetrator
identity’s) cases that were classified as such by an algorithm.
F-scores provide a weighted average of precision and recall,
with higher values reflecting better overall accuracy for a
given algorithm. CCR reports the proportion of all cases—
across all classes—that were correctly classified by a given
algorithm, and thus places relatively more weight on accu-
rate classification of one’s more common classes. We report
these out-of-sample classification statistics—averaged across
all seven perpetrator identity classes for precision, recall, and
f-scores—in Table I.

Table I offers several revealing insights. First, in terms of
precision, recall, and f-scores, none of our classifiers do a
particularly commensurate job in classifying all categories

6Omitting text-based features that exhibit 50+ unique values (factors).
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Table I
OUT-OF-SAMPLE ALGORITHM PERFORMANCE

Approach Precision Recall F-score CCR
LASSO 0.484 0.321 0.346 0.868
SLDA 0.393 0.373 0.380 0.853
SVM 0.444 0.339 0.363 0.877
Maximum Entropy 0.379 0.351 0.360 0.865
Bagging 0.419 0.306 0.331 0.861
Boosting 0.381 0.309 0.327 0.853
Random Forests 0.384 0.289 0.311 0.871
Classification Trees 0.359 0.257 0.280 0.810
Neural Network 0.230 0.246 0.237 0.832
Multiple Imputation 0.377 0.187 0.199 0.729

of the perpetrator variable. The recall values in Table I
range from a low of 0.187 (MI) to a high of 0.371 (SLDA),
implying that our classifiers correctly predict a perpetrator’s
identity in 19%-37% of the cases, on average across all seven
classes—with MI faring worst in these regards. Similarly, the
precision values in Table I imply that our ML algorithms’
predictions of a given class (i.e., perpetrator identity) are on
average correct in 23%-48% of all instances in which that
algorithm predicted an observation as having that class. MI
performs better than the two worst performing algorithms in
this case, but still only places eighth best overall.

Given the highly unbalanced nature of the seven (non-
missing) perpetrator identities in our training (and test)
dataset, the modest overall performance of our ML and MI
classifiers in these instances is unsurprising. Indeed, four of
our seven perpetrator classes together encompass fewer than
3% of all cases within our samples and are thus exception-
ally difficult to classify. The difficulty in classifying these
perpetrators brings down the average levels of precision,
recall, and f-scores for all ML and MI classifiers in Table
I. By contrast, CCR—which is less sensitive to algorithm
underperformance in rare classes—indicates that our ML
algorithms correctly classify 81%-88% of all training cases,
whereas MI only correctly classifies 73% of these cases.

We therefore also examine our precision, recall, and f-
score metrics separately for our seven perpetrator classes.
We find that our disaggregated precision, recall, and f-
scores each exhibit superior performance across the most
prominent classes, relative to the aggregated metrics pre-
sented above. For example, if we examine the performance
of our classifiers for the three most abundant perpetrator
identities (“State,” “Non-State,” and “Transnational,” repre-
senting 97% of all data), the average levels of precision,
recall, and f-scores across all nine ML classifiers are 0.768,
0.679, and 0.723; each far higher than the comparable levels
obtained when we average classifier performance across all
seven perpetrator classes (of 0.386, 0.310, and 0.326). By
comparison, the equivalent values for MI remain far lower,
at 0.545, 0.403, and 0.403. Below, we additionally evaluate
the potential further improvements in accuracy that can be
obtained by (i) leveraging ensembles of our aforementioned

algorithms and/or (ii) classifying a binary, “state” versus
“non-state” perpetrator variable, rather than the seven cat-
egory perpetrator variable examined here. Before turning to
these extensions, we first give more attention to the relative
strengths of our classifiers for the primary seven-category
perpetrator identity variable.

The f-scores in Table I provide the most direct means
of comparing the relative strengths of each algorithm
in these regards. Here, we find that six of our ML
algorithms—LASSO, SLDA, SVM, maximum entropy, bag-
ging, and boosting—noticeably outperform the remaining
three algorithms—random forests, classification trees, and
neural networks, as well as MI. This is evidenced by the
noticeable drop-off between the “best” six algorithms (with
boosting, the lowest performing of these six, reporting an
f-score of 0.327 and CCR of 0.853), relative to the f-
scores and CCRs obtained from the three aforementioned
“worst” performing algorithms (with f-scores ranging from
0.237-0.311, and CCRs ranging from 0.810-0.871) and MI
(f-score=0.199; CCR=0.729). Among the best performing
algorithms, SLDA, SVM, and maximum entropy are the
strongest performing of all algorithms based on f-scores and
CCR. Even so, many of our remaining “best” performing
algorithms outperform SVM, maximum entropy, and SLDA
in precision, most notably LASSO and bagging. SLDA
performs best on recall, though the remaining five “best”
performing ML algorithms exhibit fairly comparable recall.

In sum, the ML algorithms discussed above are able to
classify our seven-category perpetrator identity variable with
a notable degree of accuracy, and with far higher accuracy
than MI. Yet, several algorithms are also more accurate than
others for our classification tasks, and each algorithm gener-
ally performs much better in classifying our most common
perpetrator classes. As such, it is also likely that an ensemble
of our ML algorithms will offer further improvements in
recall and coverage for our perpetrator identities variable.
In this context, an ‘ensemble’ corresponds to a consensus
agreement coding of the predicted classifications that are
obtained from two or more of our algorithms. The predicted
class assigned by an ensemble accordingly represents the
most frequent class predicted across our all algorithms evalu-
ated. If all algorithms disagree for a given case, the algorithm
with the highest predicted probability—and its associated
predicted class—will be assigned as the ensemble prediction
for that case. The use of an ensemble in these respects
is in line with comparable political science applications of
supervised classification [20], [21], which have found that
ensembles substantially improve classification accuracy.

We hence examine the added benefits of ensemble agree-
ment for the classifiers used in our application. To do so,
we again leverage CCR, as defined above, and also calculate
(i) a measure of total coverage, which corresponds to the
percent of cases that meet the ensemble threshold divided
by the total cases, and (ii) the number of algorithms that
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were in consensus agreement for each case. Together, these
metrics allow us to incrementally subset our training sample
to only include cases of consensus agreement involving at
2-9 algorithms, and to evaluate overall accuracy (via CCR)
and consensus agreement at each of these eight thresholds.
These quantities are reported in Table II.

Table II
ENSEMBLE AGREEMENT

N-Ensemble Coverage CCR
n ≥ 2 1.00 0.88
n ≥ 3 1.00 0.88
n ≥ 4 1.00 0.88
n ≥ 5 0.99 0.88
n ≥ 6 0.94 0.91
n ≥ 7 0.89 0.92
n ≥ 8 0.83 0.94
n ≥ 9 0.72 0.96

We find that the use of 2-through-5 classifier ensemble
agreement does not yield a noticeable improvement (in
CCR) over using SVM alone, which was the best preforming
individual classifier (in CCR). That is, when using SVM,
we found that this algorithm correctly classified 88% of all
cases, and we find that the cases in our sample that saw at
least 2-to-5 ensemble agreement similarly classified roughly
88% of all cases correctly. This lack of improvement in CCR
is likely a function of the relatively high CCR obtained
under SVM alone, which offers little additional room for
improvement. However, as we examine the subsets of our
cases that saw ensemble agreement involving six or more
algorithms, we begin to observe additional improvement in
overall accuracy. For example, the CCR when one uses all
nine classifiers is exceptional, with 96% of all cases correctly
classified, although in this case the proportion of cases that
met this ensemble threshold has declined to 72%. To identify
an ensemble that balances coverage against the benefits (to
accuracy) of adding additional classifiers, we follow the 90%
inter-coder reliability standard that is often invoked in the
social sciences [21]. This leads us to choose a six algorithm
ensemble, as this ensemble agreement level classifies 94%
of our perpetrator cases with 91% accuracy.

B. Robustness Tests

To assess the robustness of our findings, we first reeval-
uate our results when using four-fold cross-validation. In
doing so, we find very similar patterns to those discussed
above, and also find that our ML algorithms continue to
strongly outperform MI in classification. We then examine
the potential improvements in accuracy that are obtained
from classifying a binary, “state” versus “non-state” per-
petrator variable, rather than the seven-category perpetrator
variable examined earlier. Results suggest that our nine
algorithms, and ensembles, have noticeably higher accuracy
in classifying our binary perpetrator identity variable than

either (i) polytomous ML (ensemble) classification or (ii)
our application of MI to the binary classification case (which
performs even worse than in the polytomous case).

Given that our MI comparison models omitted 15 text-
based variable-features that contained ≥50 unique factors,
we also compared our MI approach to a set of smaller ML
specifications that only included the predictors used within
our MI models. These underspecified ML algorithms were
slightly less accurate than those reported in Table I, but were
still far more accurate than MI on relevant metrics. This
suggests that the differences in accuracy between MI and
ML highlighted earlier are not wholly attributable to the
withholding of text variables from the MI model.

C. Unknown Perpetrator Classification

Our main findings suggest that an ensemble of the follow-
ing six algorithms performs best in classifying our known
perpetrator cases: LASSO, SLDA, SVN, maximum entropy,
bagging, and boosting. The present section accordingly
returns to our full dataset, and divides this dataset into
two samples: a training sample corresponding to all known
perpetrator cases (N=4,870) and a second virgin sample cor-
responding to all unknown perpetrator cases (N=2,258). We
then separately deploy (i) an ensemble of LASSO, SLDA,
SVN, maximum entropy, bagging, and boosting and (ii)
our MI approach for the task of classifying all “unknown”
perpetrator cases in our virgin sample. After classifying the
unknown perpetrator cases into our seven known perpetrator
classes using the ensemble and MI approaches, we examine
each approach’s frequencies of assigned perpetrator classes
within our virgin “unknown” perpetrator sample. We also
consider the frequency of ML ensemble agreements for this
virgin sample in Figure 2.

Figure 2. Consensus Agreements (ML Approach)

The virgin classifications are similar in the aggregate
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across the MI and ensemble ML approaches, thereby under-
scoring the utility of both approaches in recovering unknown
perpetrator identities. For instance, we find that our MI
and ML classifications of unknown perpetrators each yield
remarkably higher shares of non-state perpetrators than that
found in the known perpetrator sample: 72% of all known
perpetrator cases in the PITF dataset had the designation
of “Non-State, No State Sanction” whereas 93% of all
unknown cases were classified as “Non-State, No State
Sanction” by our ML approach. In addition, our virgin
sample saw only 6% of all cases classified as “State”
perpetrators by our ML approach—far lower than the 21%
of our known cases recorded as being “State” perpetrators
within our known perpetrator sample. These results suggest
that the vast majority of unattributed atrocities (1995-2013)
were committed by non-state actors. This in turn implies
that studies of non-state perpetrated atrocities that discard
unknown cases may substantially bias their results due to the
fact that “unknown” cases are not missing at random. By that
same token, studies of government perpetrated atrocities that
discard unknown atrocities cases may not be substantially
biased, given the very small share of unknown cases that
correspond to this class of perpetrator.

There are several reasons to view these observed patterns
as valid. Based on Figure 2, the vast majority (93%) of virgin
cases saw at least five algorithms in consensus agreement,
and 84% of all virgin cases saw all six algorithms in
consensus agreement. When interpreted alongside Table II—
where we found that instances of six-algorithm consensus
agreement accurately classified 91% of all corresponding
cases within our test sample—these levels of agreement
suggest that our algorithms are fairly confident, and accurate,
in classifying our unknown atrocities cases. Second, we also
do not find that our out-of-sample classifications of known
perpetrator cases yield comparably skewed results towards
the “non-state” perpetrator class. Thus, we are unlikely to
have classified a high number of unknown perpetrators as
“non-state” due to ML and MI severely overpredicting “non-
state” cases over “state” cases.

Third, the fact that we find similar patterns (i) across
MI and ML and (ii) when applying these same virgin-
classification steps to a binary perpetrator variable further
underscores the robustness of our overall classification find-
ings. Fourth, extant research suggests that rebel violence
against civilians is significantly higher than government
violence during our general period of analysis [6], [2]—a
pattern that our full PITF dataset now matches much more
closely after these virgin classifications are added in. Fifth,
previous research indicates that non-state actors are more
likely to operate in rural areas, where they disproportionately
rely on violence to induce civilian compliance [8]. Given
that rural areas are more likely to have higher instances
of reporting bias and related information deficiencies [11],
[12], it is thus unsurprising that the majority of missing

perpetrator cases correspond to rebel perpetrators.
These patterns also sharpen our theoretical understandings

of atrocities. Past research suggests that non-state actors
frequently resort to civilian killings as a means of offset-
ting imbalances in power and capacity between themselves
and government forces [13], [25], [26]. This implies that
the frequency of atrocities should be much higher among
non-state actors, who are generally weaker than opposing
government forces in terms of military mobilization and
technological capacity [27]. Our finding that a majority of
unknown atrocities are perpetrated by non-state actors lends
support to this argument and suggests that this strategy may
be more prevalent than previously thought. Likewise, power
asymmetries within intrastate conflicts imply that state actors
are often likely to control more territory and have better in-
formation on enemy collaborators than will non-state groups
[7]. In these situations, state forces will often be better
able (and hence more likely) to use discriminate violence
against specific targets. However, because non-state groups
frequently have fewer resources to allocate to collecting
information [28], [27] and are likely to operate in territories
they do not control [25], they must rely on indiscriminate
violence to a much greater extent—a pattern confirmed by
the disproportionate rates of non-state perpetrated atrocities
uncovered by our analysis.

Finally, note that a key justification for the use of violence
against civilians by both state and non-state actors is the
ability to signal strength and resolve to opponents or other
third-party observers [29], [25], [30]. In these situations,
perpetrators want to have their identity known, and would
therefore gladly take responsibility for their actions. Perpe-
trating atrocities in anonymity, however, does not allow for
such credible signals. From this perspective, our finding that
the majority of unknown atrocities are actually perpetrated
by non-state actors thus lends support to less “strategic”
perspectives, such as lack of control over one’s own troops,
or intermittent pressures to secure resources from civilians
by violent means [8], [31]. As such, our results suggest
that while both state and non-state actors may use atrocities
to signal resolve and strength, it is predominately non-
state actors that commit “unclaimed” atrocities, possibly for
reasons associated with a lack of control or resource (e.g.,
food) shocks. This, again, is in line with rebels’ tendencies
towards operating in more rural and/or disputed areas [6]
and oft-lower resources and technological capacities relative
to government forces [28], [27].

D. External Validation

To verify that the patterns found within our virgin classifi-
cation exercise—and our ML approach more generally—are
accurate, we next compare our ML-adjusted perpetrator es-
timates to the National Counterterrorism Center’s Iraq Geo-
referenced Worldwide Incident Tracking System (WITS)
Data (2004-2010). The WITS dataset is one of the most
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comprehensive and detailed publicly available datasets on
attacks against civilians perpetrated by non-state groups,
and has been used in similar assessments in past research
[10]. Further, the WITS data are likely to exhibit higher
levels of ground truth than the PITF data given the WITS
dataset’s coding “from open sources manually using com-
mercial subscription news services, the USG’s Open Source
Center (OSC), local news websites reported in English,
and, as permitted by the linguistic capabilities of the team,
local news websites reported in foreign languages” [32]. To
guarantee that analysts do not overclassify attacks or code
attacks against combatants as attacks against civilians, the
WITS uses computer programs to “flag” incidents that might
occur due to human error, which allows analysts to update
their entries [32].

The Iraq WITS dataset only records attacks perpetrated
by non-state actors. Given that our ML algorithms classify
the majority of attacks by unknown perpetrators as being
carried out by non-state actors, these Iraq WITS data thereby
allow us to most appropriately test whether our ML approach
over-classifies or correctly-classifies unknown atrocities as
non-state atrocities. To ensure that the WITS data match
the PITF’s atrocities cases as closely as possible, we subset
the WITS data to only include incidents where five or more
fatalities were reported. We then merge these incidents to
those coded by PITF as occurring in Iraq between 2004-
2010, which is the temporal range covered by the Iraq
WITS dataset. Taken together, these steps allow us to draw
comparisons between three different Iraq ‘datasets’ of non-
state perpetrated atrocities during the 2004-2010 period: (1)
the Iraq WITS dataset; (2) the PITF dataset with all unknown
perpetrator events removed; and (3) a version of the PITF
dataset that also adds all additional PITF atrocities cases
whose unknown perpetrators were classified as non-state by
our ML algorithms to dataset (2).

We then merge datasets (1)-(3) to a monthly-PRIO-GRID
[33] for Iraq. This leads our final validation data to contain
non-state perpetrated atrocities counts for each 0.5x0.5◦

grid-cell month in Iraq (2004-2010). Comparing these count
data, we find our non-ML corrected PITF events to be
correlated with the WITS events at 0.51, whereas our ML-
corrected PITF events are instead correlated with the WITS
events at 0.91. Next, in dichotomizing each grid-month event
count indicator and examining how well each dichotomized
PITF measure then classifies our WITS cases, we further find
that our ML-adjusted PITF records exhibit superior levels
of precision (0.791>0.772), recall (0.461>0.217), f-score
(0.582>0.339) and CCR (0.962>0.952) than the unadjusted
PITF cases. These comparisons indicate that ML accurately
recovers non-state atrocity perpetrators in Iraq.

We then repeat these comparisons using the MI-adjusted
PITF data. Within our disaggregated grid-month level frame-
work, the MI-adjusted PITF counts exhibit a comparable
WITS-correlation to that of our ML-adjusted counts, and

one that is far superior to that of the unadjusted PITF counts.
These findings underscore the applicability and appropriate-
ness of MI as a competitive approach to recovering miss-
ing perpetrator information in this application, in support
of [10]. Nevertheless, we also find that our dichotomized
grid-month MI-corrected atrocities cases classify our binary
WITS records with moderately lower levels of precision,
recall, f-score, and CCR—relative to ML—suggesting that
ML remains a preferred method in this case.

V. CONCLUSION

This paper evaluates whether supervised ML techniques
can accurately recover the identities of unknown atrocity
perpetrators within datasets of atrocities events. Many theo-
ries of atrocities (and tests thereof) hinge on the identity of
atrocities-perpetrators [13], [6], [7], [8]. International human
rights and legal communities likewise require reliable infor-
mation on perpetrators for successful prosecution and/or cen-
suring. However, as many as one third of all atrocities inci-
dents in commonly used atrocities datasets lack information
on perpetrators’ identities. We have shown that ML methods
offer one way forward in reliably identifying (unknown)
atrocity perpetrators within contemporary atrocities events
datasets. Our application to the PITF Worldwide Atrocities
Dataset then demonstrates that this proposed strategy can
accurately recover the identities of atrocities perpetrators
within both out-of-sample and in-sample settings.

Substantively, our findings indicate that a majority of
contemporary unclaimed atrocities have been perpetrated
by non-state actors. This supports past research [6], [2],
while also suggesting that rebel violence against civilians
may be even more prevalent than previously thought. Future
research should evaluate the causal mechanisms underlying
these trends by exploring whether this pattern is attributable
to rebel groups’ relatively (i) lower levels of discipline and
supplies, (ii) stronger incentives to conceal their use of vio-
lence against proximate civilians, or (iii) higher tendencies to
operate in rural areas prone to media reporting bias. Method-
ologically, our analysis illuminates an important avenue for
future research: the integration of MI and ML. Indeed, fully
integrating ML and MI to address missing social science
data via approaches such as [34] would likely allow future
researchers to better leverage these approaches’ relative
strengths, while avoiding their respective weaknesses.
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