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Abstract—Research has highlighted relationships between
size and scaled growth across a large variety of biological and
social organisms, ranging from bacteria, through animals and
plants, to cities an companies. Yet, heretofore, identifying a
similar relationship at the country level has proven challenging.
One reason is that, unlike the former, countries have predefined
borders, which limit their ability to grow ‘“organically.”” This
paper addresses this issue by identifying and validating an
effective measure of organic growth at the country level:
nighttime light emissions, which serve as a proxy of energy
allocations where more productive activity takes place. This
indicator is compared to population size to illustrate that
while nighttime light emissions are associated with superlinear
growth, population size at the country level is associated with
sublinear growth. These relationships and their implications for
economic inequalities are then explored using high-resolution
geospatial datasets spanning the last three decades.

Keywords-nighttime light, scaled growth, economic develop-
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I. INTRODUCTION

Research shows that cities experience increasing returns
to scale with respect to their size, a phenomenon known
as “superlinear” growth [1], [2]. According to data on U.S.
cities, once logged, population size is associated with a ~
1.15 unit increase in different urbanization measures—e.g.,
GDP, crime rate, patent applications—for a one unit increase
in population when both measures are logged.

Interestingly, however, the same does not appear to be
true once one moves from the city to the country level. One
possible explanation is that whereas cities experience organic
growth and are unbounded, state borders are arbitrarily
drawn, and hence place systemic constraints efficiency at
the country level. Yet, to argue that state borders render
scaled growth unlikely at the country level might be a case
of “throwing the baby out with the bathwater.” Consider the
difference between East and West Germany prior to unifica-
tion. East German borders were preliminary (and arbitrarily)
drawn in the Yalta Conference in 1945, and were decided de
facto based on where Soviet troops stopped in their progress
west at the end of World War II [3]. Despite this arbitrary
division, the economic, political, and intellectual difference
between East and West Germany could not have been more
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pronounced—whereas a strikingly censored, economically
underdeveloped state evolved in the east, the west bloomed
into an economic powerhouse and a haven for democracy.
Countries, in other words, vary markedly based on their
internal institutions, and whether and how the latter facilitate
economic growth [4].

Is there a way to test whether growth at the country
level is superlinear, sublinear, or both? Studies of cities and
growth [1], [2] rely on population size to approximate city
size. Yet, population size is not divided “efficiently” within
the state. While cities—unbounded—can attract the “most
efficient” individuals (or those who have more resources)
and experience superlinear growth, the implications for the
countryside might be negative: those who are “left behind”
in the countryside might even experience decreasing returns
for scale as resources drain to the cities. As population
movements between different countries still entail high costs,
even for residents of internal single market economies such
the European Union, the distribution of population within
states is unlikely to reflect efficient allocation of resources
and its effects on growth—measured, e.g., in gross domestic
product (GDP)—due to the relatively arbitrary delineations
of state borders.

While population or geographic area might not be an effi-
cient measure of country size, there is one indicator that does
(presumably) reflect efficient allocation of resources within
a given state: nighttime light emissions. Access to electricity
is closely linked to local development and capacity. Indeed,
recent research relied on satellite images of nighttime light
emissions to approximate local development and capacity
[51, [6], [7]. Nighttime light emissions reflects patterns
of political mobilization, revenue mobilization, economic
development, and even national security, which require effi-
cient allocation of electricity and electric infrastructure, and
is almost always governed by the state or by the (economic)
agents sanctioned by it [8].

It is important to emphasize that nighttime lights are not
synonymic with urbanization, and that one can observe high
illumination even in rural areas (e.g., where large factories
operate), while some cities, especially in developing states,
might have large number of population but relatively low



emissions [8]. Rather, the present paper compares two mea-
sures of scaled growth at the state level—one which is based
on development and one which is based on population size—
and identifies relevant implications.

II. NIGHTTIME LIGHT AND SCALABILITY

Whereas population growth is often unplanned (with the
possible exemption of some states, e.g., China and North
Korea) and hence does not reflect the most efficient allo-
cations of state capacity—and considering that changes in
geographic area and state borders are quite rare—electricity
infrastructure is often expended as to facilitate human activ-
ity, creativity, and growth [7]. Infrastructure in these areas is
also more likely to be maintained [9]. From this perspective,
energy breeds information: the level of electricity provision
is a better reflection of state “size” with respect to growth
and prosperity compared with population size.

Highly complex structures—be they cells, cities, or
states—require self-optimization to achieve efficient growth
with respect to available resources. Such self-optimization is
sustained via phenomena such as hierarchical branching net-
works, which allow the organism to achieve higher efficiency
via self-similar structures [10], [1]. From this perspective,
a good indicator of country “size” with respect to scaling
will exhibit clear self-similarity across different orders of
magnitude.

Recent studies indeed find that nighttime light clusters
show such scaling behavior, which is illustrative of net-
worked systems [11]. To illustrate this last point, Figure 1
plots frequency histograms for (logged) average nighttime
light emissions, measured at the annual, high-granularity 0.5
degree (o) cell resolution' over the entire globe, which were
averaged over the 1992-2012 period. Data on all cloud-free,
composite nighttime light indicators used in this study were
obtained from the PRIO-Grid dataset [12]. For comparison,
Figure 2 plots frequency histograms for (logged) average
population levels, the standard size indicator in studies that
focus on cities [2], measured at the same annual 0.50 level
over the 1995-2010 period and obtained from [13]. For each
indicator, six plots are reported, showing values (i) across
all grid cells, (ii) only non-zero values, (iii) cells with values
above the median, (iv) cells with values in the top 75th
percentile, (v) cells with values in the top 90th percentile,
and (vi) cells with values in the top 99th percentile. For
each of these figures, probability distributions are plotted
to illustrate whether each measure maintains self-similarity
across different thresholds.

Referring to Figure 1, the different plots illustrate a
striking similarity of the probability density distributions of
(logged) nighttime light levels across the different thresh-
olds. The plot for (i) slightly resembles a power law dis-

Ile., a “square” of approximately 55km x 55km at the equator, which
increases in size as one moves toward the poles. The PRIO-Grid includes
64,818 such cells for any given year.
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Figure 2. Histograms of Average Population Levels by 0.50 Grids
(Logged), 1995-2010

tribution, but once zero values are removed, the nighttime
light frequencies (ii-vi) exhibit remarkable similarity in their
(linear) probability densities, regardless of the threshold
used. This provides strong evidence to suggest that, indeed,
nighttime light levels follow a power law distribution, and
are hence scalable at higher levels of aggregation, such as
the state.

In contrast, Figure 2 illustrates that the probability density
plots of the (log) population change shape across these dif-
ferent threshold values. The probability distributions shifts
from a bivariate normal in (i) and (ii) to a skewed distribution
in (iii), then to linear in (iv) and (v), and finally to a power-
law like in (vi). This provides evidence to suggest that
population size, while it might be a useful approximation
of city size [1], [2], does not (log) linearly scale up to the



country level, as illustrated in the ensuing section.

III. TESTING RELATIONSHIPS AT THE COUNTRY LEVEL

The previous section illustrated that, tested against similar
country-level measures of productivity/growth, nighttime
light emissions and population size should yield divergent
results. These expectations can be defined in mathematical
terms. First, refer to the formula from [1]:

Y, = YoN/ (1)

Where Y; denotes material indicators of success at year ¢, Y
is a normalization constant, and N; is a measure of “size,”’
in the present case different population or nighttime light
indicators. In this equation [ is the exponent: if 5 > 1
(ideally, 8 ~ 1.15) then it can be concluded that growth
is superlinear (denoted for convenience as 3'); if 8 < 1
(ideally, 8 ~ 0.75) then it can be concluded that growth
is sublinear (denoted for convenience as (%). Taking the
(natural) log of this equation and simplifying yields the
following linear equation:

In(Y;) = In(Yo) + BIn(Ny) @)

This equation can be estimated using ordinary least
squares (OLS), across different operationalizations of Y; and
N;. To operationalize material success, the present article
relies on two distinct real gross domestic product (GDP)
indicators, in a manner used in past research [1], [2]. The
first GDP indicator was obtained from the “Expanded trade
and GDP data” [14], which covers each year during the
1950-2011 period, and presumably provide a better approxi-
mation of GDP and population compared other, more widely
used measures. The second indicator was obtained from the
World Bank data [15], which cover the 1960-2014 period.
The corresponding population indicators used to evaluate
the relationship between population size and GDP were also
obtained from [14] and [15], respectively.2

To evaluate how nighttime light emissions scale with re-
spect to GDP, two different nighttime-light-based indicators
are used. The first, reported above, measures average annual
nighttime light emissions within a given 0.5 degree grid cell,
and is hence a measure of how much electricity/developed
infrastructure was available within a given country in year ¢
[5]. The second indicator measures the annual standard devi-
ation in emissions within a given 0.5 degree grid cell, and is
hence a good approximation of how much new infrastructure
was added in a given country during year ¢. Both indicators
were obtained from the PRIO-Grid dataset mentioned above
[12] and were measured at the same annual 0.5 degree cell
level of resolution for the years 1992-2013, and both were

2Note that because the unit of analysis is the country-year, the plotted
data in the correlations below appears as a large number of small diagonal
clusters.
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Figure 5. Average Population by 0.5 Degree Grids, 1995-2010

aggregated to the country-year level to correspond to the
GDP indicator’s level of operationalization.

For illustration, average and standard deviations (SDs) in
nighttime light levels by 0.5 degree cell across the entire
globe are plotted in Figures 3 and 4, respectively, and
were averaged for the 1992-2013 period. For comparison,
population densities for each 0.5 degree cell (the same ones
used in Figure 2) are plotted in Figure 5 and were averaged
over the entire 1995-2010 period.>

The correlations between mean nighttime light and GDP,
and nighttime light SDs and GDP, are plotted in Figures
6-7, respectively. As both figures illustrate, population size
scales sublinearly with respect to GDP, with (similarly sized)

3Considering the high population density in China and India, it might
be hard to infer from this map where most people reside across the entire
terrestrial globe. For a better illustration of the latter, a similar map where
population size was logged is reported in the online appendix.
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Figure 7. Global Regression Estimates, Population and GDP (World Bank
2016)

coefficients of 4+ ~ 0.9. Turning to the effects of nighttime
light, Figure 8 illustrates that (natural log) mean nighttime
light values have a 87 ~ 1.01, while (natural log) standard
deviation in nighttime light values have a AT ~ 1.15.
Overall, the evidence strongly suggests that nighttime light
emissions—as an approximation of local development and
efficient energy allocations—are indeed a scalable measure
of country “size” (in terms of energy availability) with
respect to growth and economic prosperity.*

IV. IMPLICATIONS

An implication of the superlinear scaling of nighttime
light and the sublinear scaling of population at the country

4Additional verification of this relationship using limited survey-based
data on electricity provisions at the country level is provided in the online
appendix.
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level is that such dynamics are likely to generate both “win-
ners” and “losers.” Research suggests that high-efficiency
urbanization leads to increased rates of economic develop-
ment and knowledge creation, as resources “drain” toward
exponentially growing urban centers [1], [2]. The downside
of these dynamics, the negative impact on peripheral urban
areas and the rural countryside, can be daunting. This can
also explain why nighttime light, as a measure of efficient
energy allocation for the most successful activities, scales
superlinearly at the country level, while population size,
which is less mobile compared with energy allocations,
scales sublinearly. As the preferences of governments and
private actors favor highly-productive areas, and as those
who have the capacity and the financial ability move to
the center (cities), the periphery remains—on average—
depleted, facing economic downturns, increasing inequality,



and shortages in human capital.

To evaluate whether changes in the global distribution of
nighttime light over the last decades have had a negative
impact on some regions but not others, Figure 10 plots all the
0.50 cells that experienced a decrease in average nighttime
light levels between 1992 and 2013. This map strongly
suggests that indeed, nighttime light levels decreased mostly
in rural areas or regions facing economic decline. Overall,
of the total of 63,415 grid cells on which information on
nighttime light was available, 5,086 cells experienced a
decrease in average nighttime light emissions. As Figure 10
illustrates, the region primarily affected were states of the
former Soviet Union, which experienced significant decline
in economic output during the period of observation [16], as
well as the American “Rust Belt” [17] and industries east of
the Pacific Coast and west of the Mississippi; the Rocky and
maritime provinces of Canada; rural parts of sub-Saharan
and northern Africa; and rural parts of Australia, among
others. The results remain visually unchanged when negative
changes in nighttime light emissions SDs are plotted in
Figure 11, although more cells experienced decreases in
nighttime light variability, i.e., decreases in development
activity (a total of 5,890).

Interestingly, Figure 12, which plots all the 0.50 grid
cells that experienced decreases in population size between
1995 and 2010, illustrates that while some overlap exists,
many of these local decreases in nighttime light were not
the result of decreases in population. Overall, of the 64,818
grid cells in the PRIO-Grid, 24,067 experienced population
decreases between 1995 and 2010 (while the total population
for all grid cells increased by 1.16 billion people over
the same period), the vast majority of which located in
Canada and formerly Soviet states. Note that due to the
way this population variable was constructed, local changes
in population were broadly extracted from general country
trends, excluding regions where information on such changes
was not available,> which might obscure some the local
level relationships between nighttime light and population.
Nevertheless, while overlap between decreases in nighttime
light emissions and decreases in population exist in some
regions, most noticeably in the former Soviet Union, other
regions exhibit marked divergence.

The American “Rust Belt” for instance, especially the area
covering upstate New York, Pennsylvania, and Ohio, shows
large decreases in average nighttime light emissions and
their SDs, while experiencing only mild, highly-localized
decreases in population size. From a complementary per-
spective, both western Europe and eastern China experienced
population decreases, but show no declines in nighttime
light emissions, as explained by the fact that these regions
went through urbanization and development over the same

SE.g., in the northern part of the Canadian provinces Alberta and
Saskatchewan.

Figure 10. 0.5 Degree Grid Cells that Experienced Reduction in Mean
Nighttime Light between 1992 and 2013

Figure 11. 0.5 Degree Grid Cells that Experienced Reduction in Nighttime
Light SDs between 1992 and 2013

Figure 12. 0.5 Degree Grid Cells that Experienced Reduction in Population
Size between1995-2010

period [18], [19]. These discrepancies are also illustrated by
Figures 13-14, which show that a large number of high-
population areas are located in cells that rank relatively low
on the nighttime light emissions scale (operationalized both
as mean levels and SDs). As resources, qualified individuals,
and industries move toward more productive areas, primarily
coastal cities, within-country inequalities deepen.
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Figure 13. Correlation between Population Size and Mean Nighttime Light
Levels, Average for 1992-2013
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Figure 14. Correlation between Population Size and Nighttime Light SDs,
Average for 1992-2013

V. DISCUSSION

The enormous complexity of states combined with the
tendency of their borders to be “inorganic,” that is defined
by factors external to their organic growth and development,
has prevented past research from identifying scaled growth
in these entities. Hence, while scaled growth has been shown
across a wide range of phenomena, ranging from cells and
bacteria, through animals and plants, to cities and companies
[20], countries have been considered a possible exception.
By focusing on nighttime light—a proxy of infrastructure
and development—as a measure of organic growth, this
paper offered a way of extending the theory of growth from
bacteria through cities, all the way to states, a remarkable
achievement for complexity studies.

Nighttime light emissions are used to facilitate the gen-

eration of information, and hence follow an organic path
of allocations, with the most productive countries showing
the highest levels of nighttime light emissions. As a result,
across the entire globe both average nighttime light lev-
els and their variability were shown to exhibit superlinear
growth at the country level. As was shown in Figure 1, night-
time light emissions also exhibit remarkable self-similarity
in their global distribution across different thresholds, in-
dicating a universality of human activity despite enormous
variability in national form. In contrast, population, the most
widely used measure of “size” in past studies [2], [20], was
shown here to be sublinearly associated with GDP.

The logic underlying the use of nighttime light as a
measure of organic growth as advocated here building on
[1], who argue that “increasing rates of innovation, wealth
creation...suggest flows of these quantities from places where
they are created faster (sources) to those where they are
produced more slowly (sinks) along an urban hierarchy
of cities dictated, on average, by population size.” One
potential objection is that such growth is still, ultimately,
constrained by the state’s physical area. While it might
be true that there is a point at which countries might run
out of physical space for further growth, within-country
spaces can be reallocated as to facilitate more economic
activity, and hence generate more nighttime light emissions.
Singapore, Hong Kong, and Taiwan are some examples of
such states, but the same is also true for larger countries such
as the United States, where—as Figure 10-11 illustrated—
development and electricity allocation shifted to favor areas
where more creative activity takes place.

The practical implications of these findings highlight the
importance of measuring and understanding the impact of
superlinear growth on areas whose resources dwindle in the
process, and where people cannot move to areas where more
economic activity takes place—especially large cities, where
the cost of living is often high—and hence fail to realize
their potential. If we assume that scaled growth follows
the laws of nature, we might also be forced to accept that
allocating resources to more efficient venues via a process
of optimization can result with the decay and even demise
of “subefficient” parts. States might experience superlinear
growth, while at the same time large segments of their
respective populations, usually in the lower income tiers,
will grow sublinearly, as was illustrated in Figures6-7 and
13—14. This suggests that economic and social optimization
are not inherently good.

This paper’s findings suggest future directions to be
explored in generalizing the empirical observations made
here to other quantities, and to our understanding of scaling
and inequality. One such venue relates to the environmental
impact of development and infrastructures, and how real-
locating infrastructure and production from some regions
to others can generate negative (and positive) externalities.
A second direction involves investigating how the social



dynamics identified here create two groups: those who
benefit from access to more infrastructure, and those who
lose from it. This knowledge will suggest paths along which
a future where economic activity and innovation can lead
to improvements in human living standards across both the
center and the periphery.

If true, these findings can also help to explain political po-
larization across developed and underdeveloped areas within
a given country [21]. This in turn can open new lines of
inquiry into the causes of inequality, and help policymakers
working to ameliorate these issues and ensure that more
individuals get to enjoy the benefits of superlinear growth
rather than suffer its sublinear implications.

VI. MATERIALS AND METHODS

The datasets used for country level analysis where ob-
tained from the World Bank and from the “Expanded
trade and GDP data” and discussed above. All data at
the annual 0.50 level were obtained from the PRIO-Grid,
and also discussed above. Fits to country-level data in
Figures 8—7 were performed by using ordinary least-squares
with a correction for heteroskedasticity at the country level
using the R software package. Results remained practi-
cally unchanged when no corrections for heteroskedas-
ticity were implemented. The online appendix is avail-
able at: http://www.orekoren.com/wp-content/uploads/2018/
07/Online- Appendix-Scaled-Paper-06_28_18.pdf.

VII. ACKNOWLEDGMENTS

The research was carried out at the Santa Fe Institute , for
Laura Mann under a training program funded by Caltech.

REFERENCES

[1] L. M. A. Bettencourt, J. Lobo, D. Helbing, K. Christian, and
G. B. West, “Growth, innovation, scaling, and the pace of life
in cities,” Proceedings of the National Academy of Sciences,
vol. 104, no. 17, pp. 7301-7306, 2007.

[2] L. Bettencourt and G. West, “A unified theory of urban
living,” Nature, vol. 467, no. 7318, pp. 912, 2010.

[3] J. C. Scott, Seeing like a state: How certain schemes to
improve the human condition have failed, New Haven: Yale
University Press, 1998.

[4] D. Acemoglu, and J. A. Robinson, Why nations fail: The
origins of power, prosperity, and poverty, New York: Crown
Publishers, 2012

[5S] X. Chen and W. D. Nordhaus, “Using luminosity data as a
proxy for economic statistics,” Proceedings of the National
Academy of Science vol. 108, no. 221, pp. 8589-8594, 2011.

[6] J. V. Henderson, A. Storeygard, and D. N. Weil, “Measuring
economic growth from outer space,” American Economic
Review, vol. 102, no. 2, pp. 994-1028, 2012.

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

(21]

N. B. Weidmann and S. Schutte, “Using night light emissions
for the prediction of local wealth,” Journal of Peace Research,
vol. 54, no. 2, pp. 125-140, 2017.

O. Koren and A. Sarbahi, “State Capacity, Insurgency and
Civil War: A Disaggregated Analysis,” International Studies
Quarterly, forthcoming.

1. Harbers, “Taxation and the unequal reach of the state:
Mapping state capacity in Ecuador,” Governance, no. 28, vol.
3, pp. 373-391, 2015.

G. B. West, J. H. Brown, and B. J. Enquist, “A general model
for the origin of allometric scaling laws in biology,” Science
vol. 276, n0.5309, pp. 122-126, 1997.

J. Zhang, X. Li, X. Wang, W. Wang, and W. Lingfei, “Scaling
behaviours in the growth of networked systems and their
geometric origins,” Scientific reports, vol. 5, pp. 9767, 2015.

A. E Tollefsen, H. Strand, and H. Buhaug, “PRIO-GRID: A
Unified Spatial Data Structure,” Journal of Peace Research,
vol. 49, no. 2, pp. 363-374, 2012.

W. D. Nordhaus, “Geography and macroeconomics: New data
and new findings,” Proceedings of the National Academy of
Science, vol 103, no. 10, pp. 3510-3517, 2006.

K. S. Gleditsch, “Expanded trade and GDP data,” Journal of
Conflict Resolution, vol 46, no. 5, pp.712-724, 2002.

World Bank, “World Development Indicators 2016,” World
Bank Publications, 2016.

J. Brizga, K. Feng, and K. Hubacek, “Drivers of CO2
emissions in the former Soviet Union: A country level IPAT
analysis from 1990 to 2010,” Energy, vol. 59, pp. 743-753,
2013.

S. Alder, D. Lagakos, and L. Ohanian, “The decline
of the US Rust Belt: a macroeconomic analysis,” FRB
Atlanta CQER Working Paper No. 14-5, 2014, available at:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2586168.

R. R. Shaker, “The well-being of nations: an empirical assess-
ment of sustainable urbanization for Europe,” International
Journal of Sustainable Development & World Ecology vol.
22, no. 5, pp. 375-387, 2015.

M. Cimoli, G. Dosi, and J. Stiglitz, Industrial policy and
development: The political economy of capabilities accumu-
lation, Oxford: Oxford University Press, 2009.

G. West, Scale: The Universal Laws of Growth, Innovation,
Sustainability, and the Pace of Life in Organisms, Cities,
Economies, and Companies. New York: Penguin, 2017.

D. I. Scala, D. J., and K. M. Johnson, K. M., “Political Po-
larization along the Rural-Urban Continuum? The Geography
of the Presidential Vote, 2000-2016,” The ANNALS of the
American Academy of Political and Social Science, vol. 672,
no. 1, pp. 162-184, 2017.



