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Abstract

A growing number of studies draw linkages between violent conflict and food scarcities. Yet,
evidence suggests that within states, conflict revolves around food resources abundance. I
develop an explanation for how the competition over food resources conditions the strate-
gic behaviors of three actors: rebels, civilian producers who grow crops, and state forces.
Using a statistical-strategic model, I validate my theory at the subnational level on new
high specificity spatial data on staple crop access and productivity in Africa for the years
1998-2008 (and use the estimates to forecast conflict on out-of-sample data for 2009-2010).
In line with theoretical expectations, local variations in food productivity have a positive,
statistically significant, and substantive effect on the strategic behaviors of different actors.
These findings suggest that the imperative for food denial as a micro level tactic in civil war
should be more seriously incorporated into the work of scholars and policymakers.
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The use of food denial as a macro level strategy in war has attracted ample attention (see,

e.g., Downes, 2008; Keller, 1992). Yet, our understanding of how food denial affects conflict

patterns at themicro level remains poor. In developing a theory that emphasizes the strategic

incentives of multiple actors and deriving a strategic empirical model tested on new high-

resolution data on food productivity, the present article undertakes the first evaluation of

food denial’s role as a salient tactic in contemporary civil war.

Understanding how the imperative for food denial can drive different actors to instigate

violence is important given that evidence from countries as diverse as Uganda (Mkutu, 2001),

Peru (Walker, 1999), and India (Sundar, 2007) suggests that conflict dynamics are closely

associated with food resources. As civil war is arguably most prevalent in the developing

world, which is also expected to bear the brunt of climate change’s effects (Miguel, Satyanath

and Sergenti, 2004), it is not surprising that a growing number of studies draw links between

environmental conditions such as the variability in temperature or precipitation and violent

conflict, hypothesizing that these factors, among others, affect conflict by negatively im-

pacting food production (Miguel, Satyanath and Sergenti, 2004; McGuirk and Burke, 2017;

Von Uexkull et al., 2016).

Despite these contributions, little analysis concerning how food resources affect violent

conflict has been conducted. Some scholars of the climate-conflict nexus argue that decreases

in agricultural output can lead to more labor flexibility, which results in cheaper labor and

more recruits being available to rebels (McGuirk and Burke, 2017; Fjelde, 2015). However,

the focus on scarcity alone cannot predict where conflict over food will arise within the state.

For instance, Koren (2018) shows that, at the local level and after accounting for the inherent

endogeneity between the conflict and food productivity, the frequency of violent attacks

increases during years of higher, not lower productivity. Similarly, McGuirk and Burke (2017)

associate abundance and low food prices with conflicts over agricultural inputs. Indeed, a

close examination of data on rebel attacks at the disaggregated within-country “grid-cell

year” level in Africa (Raleigh et al., 2010),1 shows such attacks predominately target regions
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where food is grown (92% of all incidents). Fitting explanations should therefore account for

how food resource abundance, in addition to food scarcities, affects local conflict frequency

(Butler and Gates, 2012; McGuirk and Burke, 2017).

What impact does food security have on patterns of conflict within developing states?

How do food resources shape the behaviors of both armed groups and civilians in civil

war? To answer these questions, I develop a complementary explanation to scarcity-centric

theories, which emphasizes the strategic incentives of actors not only to secure food resources

during civil war, but also to prevent them from being consumed by others. When pro-state

forces – be they the military or ethnic militias – are able to secure more food resources,

they can support more troops, reduce the chances of animosity between individuals, and

operate in large contingents. This is especially true for countries where troops are paid

with staples, such as Sierra Leone during the civil war (Koren, 2018). To achieve strategic

advantage, rebel groups might seek to cut off the supply of state forces, which must also rely

on locally-sourced food, in order to weaken them. This incentive should give rise to violence

not only between rebel and government troops, but also between rebels and local militias

defending the civilians where official state militaries lack the capacity to do so (Adano et al.,

2012; Hoffman, 2007). In the developing world, where the majority of armed groups are

unlikely to receive regular logistic support and must rely on the local population for food

(Koren, 2018; Hendrix and Brinkman, 2013), the possibility that conflict will arise over the

imperative to deny food support is especially likely.

In developing this argument, I emphasize not only the role played by state forces and

rebels, but also by local civilians, the primary producers of food. Building on previous work

(e.g., Butler and Gates, 2012; Fjelde, 2015), I posit that when the local civilians raise food

support levels, they correspondingly increase the probability the state will win. Moreover,

because it varies annually, this level of support cannot be known to the rebels in advance.

During war, the rebels anticipate that if more food support is available to state forces, their

own chances of victory will diminish. Above a certain level of state forces strength, the
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possibility of high food support levels becomes a grave threat. This, in turn, gives the rebels

an incentive to escalate conflict into regions with more food resources in order to cut state

forces off from these sources of support, and increase their (the rebels’) chances of victory.

Building closely on past research (e.g., Signorino, 1999; Carter, 2010), I use this theo-

retical argument to derive a statistical-strategic model that identifies the specific conditions

affecting the conflict gains of rebels on the one hand, and civilian producers and their state

defenders on the other. Briefly, this strategic approach expands on standard (linear) methods

by incorporating not one but two related phenomena of interest, corresponding to attacks

and responses. I then estimate this model on high resolution data on conflict and local

food access and productivity for the years 1998-2008 (Ray et al., 2012; Ramankutty et al.,

2008).2 Overall, this study provides new and nuanced evidence that food productivity have a

strong effect on the strategic calculi of different armed and unarmed actors, which generates

intensified preemptive competition over areas with more food resources.

Food Support and Conflict Escalation

Background

The notion that climatic variability affects armed conflict has received much consideration

in recent years (e.g., Burke et al., 2009; McGuirk and Burke, 2017; Von Uexkull et al.,

2016). This, in essence, is a labor-centric perspective: decreases in agricultural output

caused by prolonged heat waves or drought can lead to more labor flexibility, which results

in cheaper labor and more recruits being available to rebels. For instance, McGuirk and

Burke (2017, 26) focus on how variations in food prices alter the opportunity cost of violence

and affects the incentives for conflict, and find that food price shocks, e.g. due to drought,

“increase self-reported theft and violence perpetrated against commercial farmers relative to

equivalent changes in cash crop prices.” Similarly, Fjelde (2015) combines static data on local

cropland with country level prices to identify local effects of food price variability on civil war.

Fjelde (2015, 531) finds that “negative changes to the value of local agricultural production
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increases the risk of armed conflict in Africa,” presumably because “conflict risk increases

individual incentives to rebel as opportunity costs go down” and operates by “weakening

the state’s coercive capacity.” More cautiously, Von Uexkull et al. (2016, 12394-12395)

find that ongoing conflicts “decrease the local population’s ability to cope with increased

environmental hardship and increase their incentives to sustain ongoing resistance,” but also

emphasize that, “it is clear that drought explains a small share of the observed variation in

conflict involvement, implying that the substantive effect is modest compared with central

drivers of conflict.”

As useful as the labor-centric perspective is, it also overlooks the key fact that a larger

pool of potential recruits means little if the rebel group cannot provide them with adequate

food support. Therefore, an increasing number of studies that focus on the subnational level

now emphasize that within violence-prone countries, conflict might be more likely to arise

in areas with more food resources (e.g., Butler and Gates, 2012; Adano et al., 2012; Koren,

2018). These studies highlight the importance of locally-grown resources to maintaining and

improving the wellbeing and fighting capacity of different groups in many (rural) regions

of the developing world. They also identify numerous reasons for why conflict might arise

in food-abundant areas, including the need to secure resources for self-sustenance, satisfy

demand for particular resources such as staple crops or cattle, or control access to water.

In line with this research, rather than focusing on labor the present study emphasizes

the importance of food as a crucial resource of fighting. However, its key motivation is that

despite the valuable insights provided by both bodies of research, we are still missing a theory

that (i) explains when strategic interactions around food-related concerns shape broader

conflict patterns between different armed and unarmed actors, and (ii) identifies, isolates,

and verifies specific causes for why conflict concentrates in food-abundant areas. Indeed,

to explain these interactions and the trend, shown in the introduction, that rebel attacks

concentrate in areas with more food crops, I design my theory around the competition over

food resources. In this context, food (in)security relates to the (in)ability of actors, armed
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groups and communities, to secure adequate amount of and/or access to food (Barrett, 2010).

Correspondingly, to weaken one’s rivals, possessing and even destroying sources of food is

a beneficial strategy that increases the opponents’ levels of food insecurity, thus negatively

affecting their fighting capacity (Hendrix and Brinkman, 2013).3

Basic Concepts

When will rebels benefit from escalating conflict into a given region in a given year (t),

and when will the civilians be able to increase the probability that such attacks will be

thwarted? Building on the evidence that the interactions over food denial during civil war

arise strategically, we can derive a two-step testable theory to answer these questions.4

Assume three actors interacting in an agricultural region of a developing country: a set

of civilians (i.e., food producers) who work the land to grow crops and livestock; rebels, who

seek to attack food-producing regions if doing so would weaken their enemy; and state forces

(ethnic militias, civil defense forces, government troops, etc.) who rely on the civilians for

food support. During war, the civilians decide the amount of food they provide to the state

forces, which the rebels cannot know in advance. Because the civilians decide their level of

food support prior to being attacked, the rebels will always be concerned that areas with

more food productivity will improve the state forces’ chances of victory.5 As recent studies

illustrated (e.g., Koren, 2018; Hendrix and Brinkman, 2013), the probability that the state

will defeat the rebels is a function of the state forces’ military strength and the effect of local

food support on increasing the fighting capacity of state forces. The effect of food support

is also influenced by other factors, such as how much escalating conflict into the region will

harm food support levels, considering their importance to the state forces.

During war, the rebels seek to target locations where food resources are grown and

stockpiled to control these areas and prevent state forces from using them for their own

consumption. In some cases, especially if the amount of food needed to support the troops

is relatively low, these attacks might also be intended to force the civilians to withdraw their

support from the regime, and to deprive the state of potential tax revenues (Wood, 2010),
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which in rural areas closely correspond to agricultural productivity (Fjelde, 2015).

However, attacking can be costly to the rebels, for instance due to the need to mobilize

fighters and obtain additional munitions, and because these attacks can result with the loss

of fighters and equipment. Attacking a given region can thus be costly and, if the rebels

lose, possibly detrimental. Hence, the rebels might choose not to attack, but rather maintain

their current war effort levels (or lack thereof), or – in other words – adhere to the status

quo. Under said status quo, the rebels get to keep their resources rather than risk the costs

of attacking the state’s food breadbasket territories. Yet, if they attack and conquer an

agricultural region, the rebels gain control both of the land and the food produced therein,

and other rents (e.g., taxation, lucrative resources).

As discussed in the next section, the civilians’ choice of support is directly shaped by

variations in food availability within the region each year. Importantly, during civil war,

the civilians not only might incur a cost due to loss of lives and property, but also face the

opportunity cost of allocating food to support state forces rather than using it for other

purposes, such as selling it on the market or using it for their own consumption. However,

if providing food support pays off and the state forces successfully defend them from the

rebels, the civilians get to keep the entirety of the land, even if not all the food produced

on it during a given year. However, if the rebels attack and the state forces lose or fail to

defend the civilians, then the civilians must forfeit their land, or else switch to feeding the

rebels to avoid retribution (see, e.g, Wood, 2010; Hultman, 2009).

According to this logic, the state forces’ decision whether to fight (harder) against the

rebels in a given region directly reflects the civilians’ actions. If the rebels choose to attack

to hurt the state’s food support levels, then state forces will be much more likely to face

rebel attacks where and when the civilians can offer more food support. Therefore, the

variation in the probability of state response reflects right-hand side factors corresponding

to the civilian producers’ behaviors in the strategic-statistical model discussed in the next

section. Considering the importance of this assumption to my argument, I control for alter-
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native explanations not only in the models reported here, but also in the sensitivity analyses

discussed in the Supplemental Appendix.

To help visualize the strategic nature of these dynamics and how each action affects the

different actors’ gains – or utilities – I plot the sequence of moves expected by my theory in

Figure 1 below. In this plot, the rebels first decide whether to attack a given region or not

during a given year. Correspondingly, knowing the level of support they might obtain from

the civilians in this regions, the state forces decide whether or not to defend the civilians

based on on food support availability and whether or not the rebels escalate their war efforts.6

Figure 1: Strategic Interactions and Player Utilities

Rebels

State Forces

Ur(F |A), Ub(F |A)

Defend

Ur(¬F |A), 0

Not Defend

Attack

Ur(SQ)

Not Attack

Theoretical Expectations

A key feature of the argument developed here is that localized conflict might arise endoge-

nously as a consequence of the strategic choices made by the civilian producers on the one

hand, and the rebels on the other. The purpose of the theory developed here and the empiri-

cal strategy discussed in the next section is to focus on both causal arrows in this endogenous

relationships, namely how food access influences rebel attacks, and how both food produc-

tivity and attacks influence defense force responsiveness. Beginning with the latter, securing

more food allows state forces to recruit and support more individuals, operate in larger con-

tingents and improve their operational durability, while higher yields of staple crops can be

converted into state revenue and used to buy weapons and equipment (Koren, 2018). As

such, higher levels of food support increases the state’s overall fighting capacity, and thus

7



the probability of winning the war. More specifically, the civilians’ might choose to provide

support under three conditions.

First, when state forces are stronger, providing food support is more likely to pay off.

Stronger state forces have a higher probability of winning, which also means that the pos-

sibility of rebel retribution – potentially an important deterrent for supporting the state –

is lower (Wood, 2010; Hultman, 2009). Better-trained and better-supported state troops

are also more likely to possess higher fighting and mobilization capacity, and hence be more

responsive to rebel attacks.

Second, (more) food support will increase the probability of state defense when it greatly

improves the state forces’ fighting capacity, especially considering that the effects of food

support might vary across different armed groups. A good example is that of civil defense

forces (CDFs), which – in many civil war contexts such as Sierra Leone (Hoffman, 2007) and

Iraq (Mowle, 2006) – are formed and supported by the local civilians. Because these groups

are relatively poorly-trained but at the same time heavily embedded in local social networks,

even a small amount of food provision can facilitate great improvements in fighting capacity

and troop recruitment (Hoffman, 2007). In contrast, well-supported military troops have

the advantage of being able to mobilize food contributions from other regions, which means

that – while they do rely on food contribution by local civilians to their fighting efforts – the

marginal returns from food produced in a given region are lower (Koren, 2018) compared

with unsupported forces, which often must live off locally-supplied food.

Finally, recall that when the rebels decide to target a given region to control the food

resources produced therein, they rely on the land’s productivity to define whether these

regions are important to state forces (Koren, 2018). Correspondingly, the state has a stronger

incentive to protect areas with more valuable and more fertile land. Moreover, the civilians

can also grow and allocate more food support to the state in such regions, meaning they

have better means of protecting it (conditional on weather patterns).

Identifying some conditions under which the civilians will increase food provision serves
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as the basis for establishing why the rebels may choose to preemptively attack regions with

more food resources. Recall that when the civilians provide more food support, they improve

state troops’ ability to operate for longer periods of time, recruit more troops, and operate

in larger contingents. Food support is also a finite resource because the civilian producers

cannot provide more food than they can physically produce and stockpile due to limitations

in infrastructure that force communities and individuals across the developing world to rely

on food produced locally (Butler and Gates, 2012; Adano et al., 2012; Koren, 2018).

As a result, in deciding whether or not to attack a give region to harm the state’s source

of food support, the rebels will realize the civilians residing in regions with more arable land

will always allocate some of these resources to support state forces, and hence that higher

levels of food support are a credible threat. More allocations decrease the rebels’ overall

probability of victory, and it is this intuition that explains why they would choose to attack

regions with more food crops. There are two explanations for this logic.

The first is effective resource allocation. Attacking a region to preemptively weaken state

forces becomes an especially attractive strategy if violence has a strong impact on reducing

available food supplies during war, especially in regions that are sizable producers of food

and are hence crucial to the state’s fighting efforts. Correspondingly, by attacking and

conquering such regions, or – in extreme cases – laying them to waste, the rebels will deal

a painful blow to the state and its forces. Therefore, choosing to attack a region where

more food is grown will give the rebels more “bang for their buck” compared with attacking

regions where less or no food is grown, all else equal. This, in turn, explains why the rebels’

strategic calculations are likely to be affected by food resource-related concerns, and hence

why preemptive violence over food resources – during civil war or otherwise – might be more

prevalent, perhaps, than initially expected: assuming a similar levels of investment, it pays

more to target productive areas.

The second explanation relates to impact benefits. If by attacking food-abundant regions

the rebels are able to cause greater harm to the state forces, then they might choose to
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attack even in regions where the state is relatively strong, which would otherwise serve to

deter attacks. If state forces are more likely to come to the aid of civilians in regions that

contribute more food provisions, then the rebels will also be more likely to attack where

they perceive food support levels to be higher. Thus, the more effective a tactic attacking

food-abundant regions is in weakening state forces, the more prevalent these attacks will be.

Anecdotal evidence supports these claims. For instance, RENAMO, a rebel group in

Mozambique, systematically sought to weaken the government by attacking rural areas and

isolating them from the capital, a strategy that emphasized the importance of agricultural

production to the regime’s war efforts (Hultman, 2009, 826-827). RENAMO thus employed

a combined strategy of possession – conquering some areas in the center to secure food

for its troops – and preemption – attacking areas to prevent food support from reaching

government forces. Therefore, while “[i]n control areas, RENAMO established bases, and

the civilian population was exploited and involved more directly in the rebel activities, for

example as food producers,” villages in the south, i.e., closer to the capital, “were mainly

destruction areas, where RENAMO just carried out military operations, attacking villages

and killing people” (Hultman, 2009, 832-833).

The strategic-response framework developed here therefore provides one explanation for

why, within developing states, conflict tends to concentrate in areas with an abundance of

food resources. Rather than thinking of conflict over food resources as a pressure on con-

sumption (Miguel, Satyanath and Sergenti, 2004; McGuirk and Burke, 2017), a useful way

of thinking of food’s role in war is to theorize it as a weapon. Under this framework, ac-

tors seek to control food resources not for consumption to improve their own dietary energy

availability or to reward supporters, but rather to worsen their opponents’ fighting capabil-

ities by denying them access to food. Food denial has been used repeatedly to weaken and

defeat one’s opponents throughout history, with some notable instances including the Allied

blockade of Germany during World War I (Downes, 2008) and the Ethiopian Derg regime’s

intentional starvations of Tigre and Eritrea (Keller, 1992). These instance, which show that
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planned famines can be used as a macro level strategy to destroy one’s opposition, comple-

ment my theory and the partial list of campaigns documented in Table A.1, Supplemental

Appendix, which show that food denial can also be initiated as a micro level tactic to achieve

the same aim during civil war.

The strategic-response framework developed here thus suggests that the civilians will

provide some level of food support to improve the state forces’ chances of victory, which

prompts the rebels to preemptively target these regions in order to weaken the former. The

rebels cannot know ex ante if the civilians will provide food support to state forces, or how

much food will they provide. However, because the rebels can observe how much food is

grown in the region, they will prefer to target, on average, food-abundant areas, under the

assumption that in these regions more food will be made available to support state forces,

and hence that (a higher level of) food support is more likely. Therefore, attacking food-

abundant regions will have an especially strong impact on weakening state forces, and thus

on improving the gains to the rebels from escalating conflict into the region. This suggests

the following expectation:

• E1: The likelihood of a rebel attack increases in regions where more food crops are

grown

Correspondingly, considering that providing food support always increases their fighting

capacity, the state forces will be more likely to defend areas where more support is available.

Moreover, the civilians will be more motivated (and more able) to provide higher levels of

support in more fertile regions, where they have both more capacity and a stronger incentive

to defend by increasing their nutritious food contributions. This is especially true where

state forces have a higher chance of defeating the rebels, as food support is more likely to

pay off, thus increasing the gains of defending against an attack. This suggests the following

expectation:

• E2: In regions where and years when the civilians can provide higher levels of food
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support, the likelihood that state forces will fight the rebels increases

Empirical Analysis

Identification

To effectively model the different outcomes presented in Figure 1, an approach is needed

that can incorporate factors influencing both the likelihood of rebel attacks, and how they

interact with the state forces likelihood of defending a given region during a given year

simultaneously. A standard model for binary data (e.g., logit) can model only one of these

at the same time, either factors influencing the rebels decision to attack, or the determinants

of the state forces’ decisions to protect. Yet, as was discussed above, the process of attacks

and defenses is endogenous (Signorino, 1999), as a defense cannot occur without the rebels

attacking first, while food support can impact both outcomes in different ways. Effectively

modeling Figure 1 requires a strategic-statistical approach that expands on standard single-

dependent-variable methods by incorporating not one but two related phenomena of interest,

corresponding to attacks and responses.

This statistical-strategic model ensures that the interactive nature of attacks and defenses

as affected by food resources availability and access is adequately operationalized and –

importantly – that the model is correctly identified with respect to these dynamics (Signorino,

1999). Like standard regression approaches, the strategic logit equivalent of the two-step

argument developed in the previous section necessitates making the plausible assumption

that all actors operate rationally within limitations (i.e. bounded rationality), and that they

hence operate with some error (e.g., Signorino, 1999). This allows me to model the decisions

occurring at different nodes of Figure 1 – i.e., whether to attack or defend given an attack – as

two different-yet-related stages of the same statistical model using an approach called logistic

quantal response equilibrium solution concept (LQRE) (Signorino, 1999; Carter, 2010). A

special case of the LQRE in which there is no uncertainty is used to identify each player’s

utility equation. This empirical model is thus structurally consistent with my theoretical
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argument, but also accommodates errors to be made by the different actors.

Note that while the use of LQRE in the discipline has been constrained largely to formal

modeling, such formalization is not necessary for the LQRE model to be applied, as this

approach is inherently empirical (Signorino, 1999). As long as a set of discrete outcomes

exists, and as long as these follow some form of a strategic or sequential logic (as described

in Figure 1 and discussed in detail above), then the empirical model used to test this two-

step logic can be estimated using LQRE. In Figure 1, there are four discrete outcomes –

the rebels attack or not, and the state defends or not – under the logic that the choices

made by each actor reflect deviation from a path where food support is held constant, or in

formal terms, the equilibrium path. As Signorino (1999, 294) explains, “[t]he LQRE solution

concept applied here is a promising approach for incorporating the structure of theorized

strategic interdependence into statistical models.” The two-step LQRE model is thus used

to overcome a misspecification issue caused by relying on the standard logit model, i.e., a

model that does not take into account the strategic nature of interactions over food support,

as shown empirically below.

The statistical-strategic model thus captures the idea that the rebels and state forces

each make decisions during war by weighing their expected gains from each possible action

(their utilities). In this case, it is useful to begin with the last step in the theoretical model

as presented in Figure 1, the decision of the civilians to provide food support and the state

to defend, and then move up the tree following each actor’s calculations. In the last step,

for each geospatial unit (region), i = {1, 2, 3...n}, during year t, the state needs to decide

whether to defend or not in case of rebel attack based on food support levels. This equation

captures the probability of state defense in the case of rebel attack given some level of food

provision (i.e., if food present, F ) compared with the probability of defense when no food

is provided (i.e., ¬F ). Accordingly, if the rebels decide to preemptively attack to deny food

resources from the state, then the defenders make the following comparison:

13



pb,i|F = U∗b (F |A) ≥ U∗b (¬F |A) (1)

= Ub(F |A) + εF ≥ Ub(¬F |A) + ε¬F

We can rewrite these probabilities in logit terms. Assuming the error terms are indepen-

dent and identically distributed (i.i.d.) Type 1 Extreme Value yields:

pb,i|F =
expUb(F |A)

expUb(F |A) + expUb(¬F |A)
(2)

pb,i|¬F = 1− pb,i|F

Equation (2) corresponds to a standard logit, where the dependent variable is the prob-

ability of state forces defending during a rebel attack. However, as mentioned above, the

two-step theory advanced here assumes that these decisions are inherently dependent in the

rebels decision to attack or not and the factors affecting this decision. Accordingly, the

statistical model must “nest” these probabilities within the probability that the rebels will

attack. Moving up the tree in Figure 1, the rebels make their decision to attack (to play

A) or not (to play ¬A) by comparing, with some error, the gains from not attacking – i.e.,

adhering to the status quo, Ur(SQ) – to their utility from attacking. This is calculated by

multiplying each of the two possible outcomes by the probability that each is realized, and

putting these probabilities in logit terms as required by the LQRE. Assuming, again, that

the error terms are i.i.d. Type 1 Extreme Value:

pr,i|A =
exp(pb,i|F )Ur(A,F )+(pb,i|¬F )Ur(A,¬F )

exp(pb,i|F )Ur(A,F )+(pb,i|¬F )Ur(A,¬F ) + exp(pr,i|¬A)Ur(SQ)
(3)

Additionally, as was mentioned above, the utility of at least one possible outcome at

14



the initial information set for both civilians and rebels is normalized to zero (Signorino,

1999). Hence, in all models reported both here and in the Supplemental Appendix, all

coefficients are evaluated with respect to an outcome where the rebels attack (play A), but

the civilians do not to provide food support (play ¬F ), which is correspondingly normalized

to zero (Signorino, 1999). So, a positive coefficient on, say, crop yields means that providing

food support improves the probability of state defense during an attack compared with a

situation where food is not available.

The Dependent Variable

Building on previous research into the relationship between food and conflict (e.g., Fjelde,

2015; Koren, 2018), the empirical model is tested on subnational data for all countries in

Africa encompassing 11 years (1998-2008) for which information on all variables was avail-

able. Africa was chosen as the focus of empirical analysis for three reasons. Firstly, the

Armed Conflict and Location and Event Data (ACLED) Version 6 dataset (Raleigh et al.,

2010), which provides one of the most exceptional coverages of a wide variety of violent events

at the highly localized level, covers exclusively African countries for the period of concern.7

Moreover, ACLED includes a broad spectrum of dyadic interactions that incorporate not

only rebel and military groups but also local militias and CDFs. This facilitates correct

identification of my theoretical argument – which incorporates the role of these groups – and

ensures that the statistical-strategic model captures a sufficiently high number of heteroge-

neous localized conflict events.

Secondly, the focus on Africa as the world region currently most susceptible to the ef-

fects of food insecurity – through climatic variability or otherwise – corresponds to previous

studies on climatic variation, food security, and conflict, which similarly focus on Africa

(e.g., O’Loughlin et al., 2012; Butler and Gates, 2012; Adano et al., 2012; Koren, 2018).8

Finally, considering the size of the dataset and the necessity to rely on computer simulations

for deriving statistical estimation, any larger sample would have presented significant – and

insurmountable, based on available resources – computational challenges.
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Unlike in a standard logit model, which includes only one dependent variable, the de-

pendent variable in an LQRE model must capture two highly-codependent phenomena: (i)

the decisions made by the rebels to attack or not, and (ii) the decision of the state to defend

or not, which with respect to food support is reflected by the civilians’ actions. Information

from ACLED was used to construct the two-part dependent variables. ACLED draws on (i)

information from local, regional, national and continental media reviewed daily; (ii) NGO

reports used to supplement media reporting in hard to access cases; and (iii) Africa-focused

news reports and analyses integrated to supplement daily media reporting.

For the first part of the dependent variable, there are two discrete actions for the rebels:

to attack (A) or not attack (¬A).9 The rebels are coded as Attack if they are recorded to

initiate a conflict (including one sided attacks against civilians) in a given cell during a given

year,10 whether a group identified as state forces was involved or not, not Attack otherwise.

Correspondingly, given an attack, the state forces can either defend the civilians against

attacks (D) or not (¬D). Hence, the second part of the dependent variable records whether

state forces, defined as official militaries, or as pro-government militias and ethnic/local

CDFs, as Defend if they are involved in any type of violent conflict initiated by rebels in a

given locality during a given year,11 not Defend otherwise.

Because it is focused on the variation in violence within states, data measured at the

annual country level would be inadequate for the purpose of empirical verification. Accord-

ingly, the violent conflict data from ACLED and all other indicators are structured into

a cell-year level dataset wherein cells, my cross-sectional unit of interest, are measured at

the 0.5 x 0.5 decimal degree resolution – or cells of approximately 55 x 55 kilometers at

the equator (3025 square kilometer area) – for all African land areas annually (t) (Tollefsen

et al., 2012). Relying on this fine-grain empirical framework allows me to carefully and accu-

rately operationalize the level and variation in food productivity within and across different

grid cells, which is necessary for my hypothesis to be evaluated. Thus, this framework is

sensitive enough to capture variations in the prevalence of rebel attacks and state forces
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responses as reflected in the distribution of staple cropland and yield levels across the entire

African continent, but not overly disaggregated such that my localized indicators lose their

precision levels due to different approaches of measuring a campaign’s geographic location

(Weidmann, 2013). There are approximately 10,674 cells observed for any given year within

the 1998-2008 sample period, with the average country containing roughly 205 cells. The

distribution of rebel attacks and state force responses for 1998-2008 are plotted by grid cell

for the entire period and annually in Figure 2 below, and their frequencies are reported in

Figure A.1, Supplemental Appendix.

Figure 2: The Regional Distribution of Rebel Attacks and State Force Responses by 0.5 ◦
Grids, 1998-2008

Rebel Attacks, 1998-2008 State Responses, 1998-2008

Regressors

The specification of the rebels’ decision to not attack (status quo) must include the key

variables that influence their decision to initiate localized attacks over food support. First,
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potential attackers are likely to employ violence in response to previous provocations, or

in locations where they have attacked previously (e.g., Buhaug, Gates and Lujala, 2009).

Second, lagged indicators of (low) development and political openness have been shown to

be consistent predictors of protracted conflict (Von Uexkull et al., 2016). Therefore, to model

the rebels’ gains from the status quo, historical context indicators impacting their propensity

to fight are included in this equation. These indicators include: history of conflict, defined as

the number of all political violence-related events by all types of actors, state and nonstate,

that occurred in a given cell the previous year (Raleigh et al., 2010); the gross domestic

product (GDP) per capita for the previous year (Gleditsch, 2002); and the level of political

openness in the previous year as measured by the Polity2 indicator (Marshall, Jaggers and

Gurr, 2013). The expectation is that the rebels will be less likely to attack in territories

without much history of conflict, as well as in stronger, wealthier, and more democratic

countries. Considering that civil war might have a simultaneous relationship with some of

these country-level factors, all variables in the status quo utility equation were lagged by one

year. The rebel’ utility from the status quo is thus modeled as:

Ur(SQ) = αSQ + βSQ,1Conflict (lag)it + βSQ,2GDP PC (lag)it + (4)

βSQ,3Polity2 (lag)it + Φt

Where α is the intercept; and Φt are fixed effects by year to account for temporal depen-

dencies.

To measure land productivity and its effects on the rebels’ decision to attack a given

location in equation (4), I employ a highly localized food access indicator, Cropland, created

by Ramankutty et al. (2008) (see Supplemental Appendix for more information on this indi-

cator). The researchers utilized two sources of data to create their map. The first source were

global satellite-based land cover data obtained from two previous datasets, BU-MODIS and
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GLC2000 (Ramankutty et al., 2008, 7-8). The second source were national and subnational

census data on cropland area and food inventories. They then used regression techniques

to train the satellite land cover data against the census data. The resulting estimates along

with the satellite data allowed Ramankutty et al. (2008) to then map cropland areas at

the high-resolution 5 minute (∼0.08 ◦) level. In the second step, Ramankutty et al. (2008,

11-12) further adjust their high-resolution maps, scaling up or down all pixels within an ad-

ministrative unit to exactly match the census data. The resulting indicator was aggregated

to the 0.5 ◦ x 0.5 ◦ level via averaging for comparability across cases and provides some

of the best available high-resolution data on staple crop production by area. As such, this

variable is arguably the best available indicator of the global distribution of staple crops,

which is relatively constant within the 11 year period analyzed here, and hence of the land

value within the rebels’ strategic calculations as hypothesized in the previous section.

While staple crop area provides a useful approximation of where food support is more

likely to be available – a rebel concern – it is not necessarily a good indicator of the actual

levels of food support provided by the civilians annually in given region. Such an indicator

should closely approximate the actual amounts of food that could be consumed or stored

annually within a given grid cell. It is thus useful for such an indicator to vary annually,

as to verify whether higher annual productivity is associated with an increased likelihood of

state forces responding to attacks. This also means that using perishable resources such as

vegetables to approximate state force responsiveness is less than ideal, and that an adequate

indicator of annual food support should – at the very least – be operationalized using food

crops that are both more durable, and provide a greater caloric “bang for buck” (Koren,

2018). As the value of food support is, to some extent, dependent on how much food can be

produced in a given grid cell, an effective parametrization should capture this codependency.

Therefore, to approximate the level of food support provided by the civilians in a given

region during a given year, I rely on an indicator measuring annual wheat productivity by

grid cell (Ray et al., 2012). Wheat was chosen because as a staple food for about 35%
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of the world’s population, it provides more calories and protein in the world’s diet than

any other crop, and can be stored for relatively long periods of time (Asfaw Negassa et

al., 2013). Moreover, in Africa wheat is in exceptionally high demand, which cannot be

met by production supply (Asfaw Negassa et al., 2013), making this crop a highly valu-

able food resource to the state compared with more prevalent resources, such as maize.12

Indeed, past research illustrated that wheat a strong determinant of conflict in the region

(Koren, 2018). Using annual productivity measures, specifically, approximates better the

amounts of food immediately available (e.g., in stockpiles) for consumption. This indicator

thus provides an exceptional coverage of the annual variations in food support availability

at the highly-localized level. Furthermore, by illustrating that the positive relationship be-

tween food support and state responsiveness persists over time, this indicator provides a

major improvement over past studies of this sort that favored static measures of cropland at

comparable levels of geographic resolution (e.g., Fjelde, 2015; O’Loughlin et al., 2012).

Data for constructing this wheat productivity indicator were obtained from Ray et al.

(2012), who constructed what is arguably the best high-resolution indicator of wheat produc-

tivity currently available, using methods discussed in detail in the Supplemental Appendix.

To ensure comparability against other variables used in this study, these wheat data coded

by Ray et al. (2012) were summed to the annual 0.5 ◦ grid cell level. The resulting Wheat

Productivity t variable therefore measures the total wheat hectares harvested within a given

0.5 ◦ grid cell during a given year. Importantly, while wheat is arguably the most highly

valued food crop, and is hence the best crop to test defense force responsiveness, in Table

A.4, Supplemental Appendix I illustrate my findings remain unchanged when the produc-

tivity of maize, a more prevalent staple crop (Koren, 2018), is used instead of wheat. For

summary purposes, averaged values for Cropland and Wheat Productivity for the 1998-2008

period are presented in Figure A.2, Supplemental Appendix.13

In line with my argument, several additional variables (some of which are not explicitly

discussed above) were also included in both equations (5) and (6). These indicators are
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all measured at the grid cell rather than country level, which adequately accounts for the

effects of these variables at the highly-localized level. First, an indicator measuring the

number of people in a given cell, Population (Nordhaus, 2006), is included to account for the

potential effect of population densities on the rebels’ and civilians’ utilities during attacks.

Second, an indicator denoting gross cell product in a given year (measured in billion USD),

GCP (Nordhaus, 2006), is included to account for other economically-productive activities.

Because GCP might not have good continental coverage in Africa, a third variable measuring

average nighttime light emissions within a given cell during a given year, Nighttime Light, is

added to the models. Past research shows that nighttime light emissions are a useful proxy

of economic productivity and development (e.g., Koren and Sarbahi, 2018), and Nighttime

Light is included to complement the effect of GCP and ensure that the models adequately

capture the theoretical incentives of both rebels and state forces to fight in areas where more

profits can be obtained.14

Third, indicators measuring average annual temperature (Temperature) and rainfall (Pre-

cipitation) levels by grid cell are included to control for the effect of these factors on food

production and correspondingly on conflict. Next, as rebel groups frequently maintain

bases across the border, which provides an advantage in launching attacks closer to bor-

ders (Buhaug, Gates and Lujala, 2009), an indicator denoting the distance of a given grid

cell to the border (Border Distance) is added to equation (5) to approximate rebel group

strength. Correspondingly, as my theory suggests that state forces are more responsive in

areas closer the state’s center of political and economic power (Hultman, 2009), an indicator

denoting distance from each cell to the capital was included in equation (6). Summary statis-

tics for all variables are reported in Table A.2, Supplemental Appendix. As was the case in

Equation 4, fixed effects for each year are added to the model to account for time-specific

dependencies. Thus, the determinants for conflict outcomes are:
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Ur(AF ) = αr|AF + βr|AF,1Croplandit + βr|AF,2Populationit + (5)

βr|AF,3NighttimeLightit + βr|AF,4GCPit + βr|AF,5Temperatureit +

βr|AF,6Precipitationit + βr|AF,7Border Distanceit + Φt

Ub(AF ) = αb|AF,0 + βb|AF,1Wheat Productivityit + βb|AF,2Populationit + (6)

βb|AF,3NighttimeLightit + βb|AF,4GCPit + βb|AF,5Temperatureit +

βb|AF,6Precipitationit + βb|AF,7Capital Distanceit + Φt

Main Findings

Table 1 first reports a baseline LQRE model of rebellion, which includes only local food-

related indicators, precipitation and nighttime light levels, and fixed effects by year. This

model is followed by a full specification that includes all the regressors discussed above.

The regression estimates in Tables 1 and 2 provide strong support for the expectations

derived from the theoretical model. One issue with standard errors in strategic-statistical

models is that the use of a choice-based sample might introduce bias, while the assumption

of independence across within-group observations is violated (Carter, 2010). To account

for these potential heterogeneities and other issues, I use bootstrapping undertaken based

on 1,000 draws, clustering the standard errors for each regression stage by the actor whose

utilities are captured in this stage. This takes into account the plausible possibility that errors

are heterogeneous between different grid-cells and years for the same actors. Each table

includes three columns. The first column corresponds to the effect of relevant indicators

on the probability that the rebel will attack given food support to state forces (or their

utility from attacking Ur(AF )). The second column reports relevant variables’ effects on the
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probability state forces will protect a given cell-year during an attack, accounting for food

support levels (or their utility from defending given an attack Ub(AF )). The fourth column

reports the effect of relevant indicators on the decision of the rebels to not attack (or their

gains from adhering to the status quo, Ur(SQ)).

Table 1: Determinants of Attacks and Defenses, 1998-2008 – Baseline Specification

Attack Given Food Support Defend Given Food Support Not Attack
Ur(AF ) Ub(AF ) Ur(SQ)

Cropland 3.495*** – –
(0.301)

Wheat Productivity – 0.184*** –
(0.051)

Nighttime Light1 2.203*** -0.141*** –
(0.194) (0.082)

Precipitation1 2.034*** 0.300*** –
(0.231) (0.076)

Conflict Frequency (Lag) – – -0.277***
(0.025)

GDP Per Capita (Lag)1 – – 0.304***
(0.036)

Polity2 (Lag) – – 0.100***
(0.006)

Constant -15.14*** -1.486*** 2.441
(3.211) (0.523) (1.498)

Number of observations: 68,283
Akaike Information Criterion: 26,904.47

* indicates p < 0.1; ** indicates p < 0.05; *** indicates p < 0.01.
Values in parentheses are standard errors clustered by player and bootstrapped using 1,000 iterations.
Ub(A¬F ) is the reference node and was normalized to zero. Fixed effects by year were included in each

utility equation, although not reported here.
1 Natural log

In line with expectation E1, the coefficient of Cropland is positive and statistically sig-

nificant, meaning that the rebels’ probability of attacking significantly increases in areas

with more staple cropland. These results hold even with the inclusion of relevant controls

for climatic effects and the different conditions discussed previously, the coefficient of which

also follow theoretical expectations. The coefficients of Population and GCP are positive

and statistically significant, suggesting that – as expected – the probability of rebel attacks

increases in areas where more people reside and more economic activity takes place, as higher
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Table 2: Determinants of Attacks and Defenses, 1998-2008 – Full Specification

Attack Given Food Support Defend Given Food Support Not Attack
Ur(AF ) Ub(AF ) Ur(SQ)

Cropland 1.635*** – –
(0.323)

Wheat Productivity – 0.017*** –
(0.003)

Population1 3.027*** 0.053*** –
(0.512) (0.008)

GCP1 5.507*** 0.274*** –
(1.391) (0.031)

Nighttime Light1 -2.470*** -0.181*** –
(0.957) (0.024)

Temperature -0.601*** -0.026*** –
(0.148) (0.004)

Precipitation1 4.176*** 0.131*** –
(0.817) (0.019)

Border Distance1 -0.351*** – –
(0.051)

Capital Distance1 – -0.028*** –
(0.005)

Conflict Frequency (Lag) – – -0.196***
(0.026)

GDP Per Capita (Lag)1 – – 0.072
(0.048)

Polity2 (Lag) – – 0.080***
(0.008)

Constant -110.18*** -0.812*** -26.37
(36.39) (0.229) (18.44)

Number of observations: 63,219
Akaike Information Criterion: 21,756.95

* indicates p < 0.1; ** indicates p < 0.05; *** indicates p < 0.01.
Values in parentheses are standard errors clustered by player and bootstrapped using 1000 iterations.
Ub(A¬F ) is the reference node and was normalized to zero. Fixed effects by year were included in each

utility equation, although not reported here.
1 Natural log
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rents can be obtained in these areas. Interestingly, once these variables are added to the

model, Nighttime Light ’s coefficient changes from positive to negative and statistically sig-

nificant. This change in coefficient suggests that – once opportunity for looting is accounted

for – attacks are more likely in low development areas. Moving on to my climatic controls,

the coefficient of Temperature is negative and statistically significant, while the coefficient

of Precipitation is positive and statistically significant, suggesting that the rebels’ utility

from attacking increases in cooler areas and where there is more rainfall. Finally, The co-

efficient of Border Distance is negative and statistically significant, meaning that – as past

research posited (e.g., Buhaug, Gates and Lujala, 2009) – rebel attacks are more likely near

the border, presumably because many groups maintain bases on the other side.

Variables’ impact on the rebels’ choice of not attacking also follows theoretical expecta-

tions: the coefficients of Conflict frequency (lag) is negative and statistically significant, while

the coefficients of both GDP Per Capita (lag) and Polity2 (lag) are positive, although only

the latter is statistically significant. These findings suggest that the rebels will gain from the

status quo where there is little history of conflict, which lessens the pressures on groups to

initiate preemptive attacks to weaken their rivals as a defensive strategy; in countries with

higher average income, where it is not necessary for food to be grown locally because it can

be easily obtained via alternative means (e.g., refrigeration, improved transportation due to

better infrastructure), and where the state has more capacity to defeat the rebels (Koren,

2018); and in countries with more political participation, which allows different groups to

resolve potential conflicts in peaceful ways rather than by escalating violence.

In line with E2, the probability that the state will defend against attack significantly

increases in areas and years with higher values of Wheat Productivity, compared with a sce-

nario where no food support is provided. Higher yields correspond to more food support that

can be allocated annually to state forces, which increases their durability, operational range,

and fighting capacity (Koren, 2018). The civilians thus benefit from higher levels of food

support, where these can be allocated, because they increase the probability that the state
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or its auxiliaries will shield the civilians from rebel violence. As was the case with the rebels’

decision to attack if food support is provided to state forces, the coefficients on Population,

GCP, and Precipitation are positive and statistically significant, while Temperature and

Nighttime Light ’s are negative and statistically significant. This suggests that food support

will have a noticeable impact on the probability of state defense where there are more people

and more economic activity to be protected, where climatic factors facilitate agricultural

productivity, and where development levels are low, which – in the baseline model – might

differ from the impact of development on the rebels choice to attack. Additionally, in line

with past research (O’Loughlin et al., 2012), the coefficient of Capital Distance is negative

and statistically significant, suggesting that state forces will respond to attacks when these

take place closer to the center of political and economic power.

To verify the sensitivity of my findings to alternative confounders, I also estimate a

number of robustness models corresponding to the full specification and reported in Tables

A.4–A.9, Supplemental Appendix. These models illustrate that my findings are robust to

(i) relying on maize instead of wheat to approximate state forces’ levels of food support, (ii)

the inclusion of additional controls for state capacity, (iii) spatial attack dependencies, (iv)

the inclusion of additional geospatial factors in both the rebels’ and civilians’ utilities, (v)

the availability of lucrative natural resources, and (vi) the strength of the state’s military.

Importantly, the effects identified Table 2 hold in every case.

Substantive and Predictive Impact

Statistical results can provide evidence about the incentives governing the strategic behaviors

of actors, but these estimates in-and-of-themselves tell us little about whether the effects

identified are truly substantively meaningful in a broader context. In other words, how strong

is the impact of food resources on the propensity of rebel attacks and defense responses?

Are the strategic model’s results generalizable to out-of-sample situations?

To verify whether these strategic interactions also have a substantive effect, I evaluate

how the probability of rebel attacks varies based on potential food-support levels; and how
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wheat levels impact state responsiveness. To this end, Figure 3 first plots the change in

the predicted probability of rebel attacks across the entire range of Cropland ; and then the

predicted probability the state will respond if attack happens (reported in percents) using

the full model estimates and holding all other variables constant. The probability of a rebel

attack in a given cell annually, taking into account the probabilities of both the status quo and

attack without civilian food support, increases by approximately ∼2.5% (on average) across

the range of Cropland. Additionally, having adjusted for the probability of rebels attacking,

the probability of the state defending against an attack increases by ∼15% (on average)

across the range of Wheat Area values. These quantities are relatively sizable considering

the size of my grid cell year framework, the rarity of attacks in my sample (an average of 0.03

attacks per grid cell), and the fact that the interpretation of these predicted probabilities is

not as straightforward as in the binary logit case due to the possibility of multiple outcomes.

For comparison, despite having a statistically significant effect, the coefficient of GCP, a

proxy of localized economic activity, have no substantive impact (i.e., an approximate ∼0%

change) on the probability of rebel attacks in a given grid cell. These findings do suggest

that the effect of food resources on preemptive rebel attacks is indeed substantive.

Given the growing importance of forecasting to the study of political violence, a valid

strategic model should also possess some predictive power. Due to space constraints, a

detailed discussion of forecasting analysis is reported in the Supplemental Appendix. More

importantly, these exercises illustrate that the LQRE model improves on the standard (i.e.,

nonstrategic) logit in terms of prediction, which additionally confirms that accounting for

the strategic behaviors of different actors with respect to food resources does indeed provide

a substantive improvement in our ability to understand and forecast conflict.
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Figure 3: Cropland’s Effects on the Predicted Change in Probability For Attacks and Defense

Rebel Attacks State Defenses

Discussion of Scope Conditions

An important feature of this study is its reliance on data for Africa due to the different

reasons discussed above. These data provide numerous advantages, namely: (i) the dyadic

nature of dependent variable facilitates a direct test of the theory, (ii) Africa is the world

area most susceptible to conflict as well as (iii) the effects of climate change, and where food

insecurity and the necessity to live off the land are, arguably, the most prevalent (O’Loughlin

et al., 2012; Koren, 2018), and (iv) the vast majority of research on the climate-food-conflict

nexus focuses on Africa.

Yet, this also suggests a potential limitation, highlighted by Adams et al. (2018, 202),

namely that “[s]tudies focusing on one or a few cases tend to study places where the de-

pendent variable (violent conflict) is present and hardly relate to the independent variable.”

Importantly, Table A.1, Supplemental Appendix illustrates the argument, mechanisms, and

findings’ seem to apply to similarly agriculturally-dependent, rural societies in other world

regions. However, it is important to acknowledge that more research is needed to fully ver-
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ify that the present study and its conclusions is indeed applicable globally, and not just in

Africa.

A second relevant scope conditions relates to violence by rebels within territories they

control. While the present analysis can be reconfigured to examine when civilians are more

likely to support rebels, an assumption of this study is that civilian producers of food initially

side with the state, which leaves them open to attacks from rebels. However, rebels often

have core areas where they can tap into civilian food production, and where they hence

refrain from attacking civilians because doing so would be counter-productive (Wood, 2010;

Hultman, 2009). The inclusion of Border Distance and Capital Distance in the rebels and

civilians’ utility functions, respectively, is designed to partially account for this issue – areas

closer to the border might be more likely to be supportive of rebels and areas closer to

the capital more likely to support the government (Hultman, 2009) – as are several of the

robustness models reported in the Supplemental Appendix. However, because no indicators

on which specific rebel group controls which cell during year t are available (to the author’s

knowledge), this is an issue the reader should bear in mind.

Conclusion

The use of food denial as a weapon of war is not a recent development. Throughout history

and well into the 19th century, armies living off the land have been a regular characteristic

of warfare, and – correspondingly – so was the preemptive destruction of food resources. By

incorporating the insight that food support is crucial in facilitating military operations in

these contexts and using a statistical estimator that is the structural equivalent of my theo-

retical argument, I confirm these expectations at the highly localized level. Indeed, once the

direct effects of food support on the strategic behaviors of different actors are isolated and

disaggregated, we identify a positive and substantive relationship between food productivity

and localized conflict. This in contrast to analyses that do not disaggregate these strategic

behaviors, which – as illustrated in Table A.10 – are less successful in terms of forecasting
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localized conflict, and where, if no measures to account for this strategic relationship are

taken, the effect of food support might appear negative rather than positive.15 Therefore,

while these findings diverge from current conceptualizations of food and violence in some

prominent studies (e.g., Miguel, Satyanath and Sergenti, 2004), they provide an explana-

tion that can help bridge the gap between such scarcity-centric studies and research that

emphasizes the role of abundance (e.g., Butler and Gates, 2012; Adano et al., 2012).

These findings also suggests ways where the framework of localized food denial attacks

can be generalized to other types of resources, such as drugs and diamonds, and even po-

litical votes. As long as the incentives governing the provision and the distribution of these

forms of support approximates that of food resources, the theoretical model developed here

can be readily extended to reflect these additional support conceptualizations (Wood, 2010).

The model can be reconfigured with relative ease to analyze when civilians are more likely

to support rebels, treating state forces as the attacker. Theoretically, specific factors influ-

encing the civilians’ utility from supporting the rebels against the state can be identified.

Empirically, the dependent variables can be modified to account for state attacks and rebel

responses rather than the other way around, while the food support variable can be opera-

tionalized using other food resource more relevant to rebel groups, such as cattle or maize

(Butler and Gates, 2012; Koren, 2018).

Finally, these findings have potential implications not only to scholars concerned with

the study of political violence, but also policymakers working to ameliorate conflict and

prevent renewal locally. For instance, reducing asymmetries in access to food or increasing

overall food security levels within the country can reduce the need for armed groups to

violently compete over these resources. Additionally, as evidenced by the effect of indicators

in the status quo equation, the probability of violence can be reduced through peacebuilding

exercises that emphasize development and democratization. From this perspective, the effect

of improving food security can be magnified by the existence and persistence of efficient

institutions that help promoting peaceful conflict resolution.
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Notes
1I.e., “cells” of approximately 55km x 55km around the equator (Tollefsen et al., 2012). Data on staple

food crops was estimated for the year 2000 (Ramankutty et al., 2008).

2In the Supplemental Appendix, estimates to forecast conflict on out-of-sample data for 2009-2010 to

illustrate its effectiveness compared with a standard (non-strategic) model.

3Due to space constraints, additional background discussion is provided in the Supplemental Appendix.

4While the focus here is on interactions related to food support and food denial, recent studies also show

that similar preemptive dynamics can cause state repression (Danneman and Ritter, 2014) and territorial

disputes (Carter, 2010).

5In the theory developed here, how food resources are provided and whether they are obtained using

coercion or enticement is irrelevant. Because it revolves around the strategic incentive of and the sequential

moves of different actors, the model is agnostic with respect to apportionment dynamics as highlighted by,

e.g., Wood (2010).

6Note that F stands for food support and A for attack. As discussed below, the scenario when the state

decision to defend from a rebel attack but the civilians do not provide support was normalized to zero.

7ACLED also covers some Middle Eastern and Asian states, but only starting 2010 (and in some cases

much later), whereas the controls used in some of the models forced me to constrict my temporal range to

the 1998-2008 period.

8Note that this can affect the applicability of my findings across the entire globe (Adams et al., 2018), as

discussed in more detail in Discussion of Scope Conditions.

9In line with theoretical expectations, rebels are defined as actors “who seek the replacement of the central

government, or the establishment of a new state” or as “ armed agents supported by political elites of various

types, seeking to influence political processes but not change the government” or as “groups engaged in local

political competition, often traditionally based contests between ethnic, community or local religious groups”

and coded as such in the “actor1” category of the dataset (Raleigh and Dowd, 2015, 16-17).

10I.e., as having initiated events not coded by ACLED Version 6 as: “Headquarters or base established”

or “Non-violent activity by a conflict actor” or “Riots/Protests” or “Non-violent transfer of territory” or

“Strategic development” (Raleigh and Dowd, 2015).

11That is included in conflict interactions in ACLED where the actor1 was rebels as defined above.

12Importantly, as Table A.4, Supplemental Appendix illustrates, the results remain unchanged when a

maize-based indicator is used instead of wheat.

13Note that no information on crops was available for cells located in the Sahara desert. These cells are

hence dropped from analysis, reducing the probability that food support’s effect is zero-inflation generated.
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14Also it is important to note that extremely high and low luminosities might cause censoring problem

with nighttime light emission data (Bluhm and Krause, 2018).

15See Table A.11, Supplemental Appendix.
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